8,779 research outputs found

    Development of single crystal beta-alumina membrane

    Get PDF
    Feasibility of crystal growth technique for beta alumina membrane from molybdenum, tungsten, and iridiu

    Fatigue damage growth mechanisms in continuous fiber reinforced titanium matrix composites

    Get PDF
    The role of fiber/matrix interface strength, residual thermal stresses, and fiber and matrix properties on fatigue damage accumulation in continuous fiber metal matrix composites (MMC) is discussed. Results from titanium matrix silicon carbide fiber composites is the primary topic of discussion. Results were obtained from both notched and unnotched specimens at room and elevated temperatures. The stress in the 0 deg fibers was identified as the controlling factor in fatigue life. Fatigue of the notched specimens indicated that cracks can grow in the matrix materials without breaking fibers

    Analytic Framework for Students' Use of Mathematics in Upper-Division Physics

    Full text link
    Many students in upper-division physics courses struggle with the mathematically sophisticated tools and techniques that are required for advanced physics content. We have developed an analytical framework to assist instructors and researchers in characterizing students' difficulties with specific mathematical tools when solving the long and complex problems that are characteristic of upper-division. In this paper, we present this framework, including its motivation and development. We also describe an application of the framework to investigations of student difficulties with direct integration in electricity and magnetism (i.e., Coulomb's Law) and approximation methods in classical mechanics (i.e., Taylor series). These investigations provide examples of the types of difficulties encountered by advanced physics students, as well as the utility of the framework for both researchers and instructors.Comment: 17 pages, 4 figures, 3 tables, in Phys. Rev. - PE

    Permutation sampling in Path Integral Monte Carlo

    Full text link
    A simple algorithm is described to sample permutations of identical particles in Path Integral Monte Carlo (PIMC) simulations of continuum many-body systems. The sampling strategy illustrated here is fairly general, and can be easily incorporated in any PIMC implementation based on the staging algorithm. Although it is similar in spirit to an existing prescription, it differs from it in some key aspects. It allows one to sample permutations efficiently, even if long paths (e.g., hundreds, or thousands of slices) are needed. We illustrate its effectiveness by presenting results of a PIMC calculation of thermodynamic properties of superfluid Helium-four, in which a very simple approximation for the high-temperature density matrix was utilized

    A search in the COS-B data base for correlated time variability in regions containing objects of interest

    Get PDF
    As is well known, association of the gamma-ray sources with celestial objects is, in general, difficult on a pure positional basis, while correlated time variability could obviously provide such proof. This technique can be employed on regions of the gamma-ray sky containing interesting objects of known variability at some wavelength even in the absence of a recognized gamma-ray excess with the aim to extract a weak but predictable signal from the surrounding noise. This technique is applied here on a longer variability time scale, generally of the order of days. Photons coming from the sky regions centered on the various celestial objects considered were selected with energies 100 MeV and with arrival directions within an energy-dependent area of radius of approx 6 deg at 100 MeV. In order to construct a time profile of such photons, their arrival times were grouped in bins of dimensions defined by the available photons number and by the value of the period searched for

    High-performance thermionic converter Quarterly progress report, 13 Nov. 1965 - 13 Feb. 1966

    Get PDF
    Stability and optimization parameters of cesium vapor thermionic converters studied in high performance long life equipment fabrication projec

    Selecting and implementing overview methods: implications from five exemplar overviews

    Get PDF
    This is the final version of the article. Available from BioMed Central via the DOI in this record.Background Overviews of systematic reviews are an increasingly popular method of evidence synthesis; there is a lack of clear guidance for completing overviews and a number of methodological challenges. At the UK Cochrane Symposium 2016, methodological challenges of five overviews were explored. Using data from these five overviews, practical implications to support methodological decision making of authors writing protocols for future overviews are proposed. Methods Methods, and their justification, from the five exemplar overviews were tabulated and compared with areas of debate identified within current literature. Key methodological challenges and implications for development of overview protocols were generated and synthesised into a list, discussed and refined until there was consensus. Results Methodological features of three Cochrane overviews, one overview of diagnostic test accuracy and one mixed methods overview have been summarised. Methods of selection of reviews and data extraction were similar. Either the AMSTAR or ROBIS tool was used to assess quality of included reviews. The GRADE approach was most commonly used to assess quality of evidence within the reviews. Eight key methodological challenges were identified from the exemplar overviews. There was good agreement between our findings and emerging areas of debate within a recent published synthesis. Implications for development of protocols for future overviews were identified. Conclusions Overviews are a relatively new methodological innovation, and there are currently substantial variations in the methodological approaches used within different overviews. There are considerable methodological challenges for which optimal solutions are not necessarily yet known. Lessons learnt from five exemplar overviews highlight a number of methodological decisions which may be beneficial to consider during the development of an overview protocol.The overview conducted by Pollock [19] was supported by a project grant from the Chief Scientist Office of the Scottish Government. The overview conducted by McClurg [21] was supported by a project grant by the Physiotherapy Research Foundation. The overview by Hunt [22] was supported as part of doctoral programme funding by the National Institute for Health Research (NIHR) Collaboration for Leadership in Applied Health Research and Care South West Peninsula (PenCLAHRC). The overview conducted by Estcourt [20] was supported by an NIHR Cochrane Programme Grant for the Safe and Appropriate Use of Blood Components. The overview conducted by Brunton [23] was commissioned by the Department of Health as part of an ongoing programme of work on health policy research synthesis. Alex Pollock is employed by the Nursing, Midwifery and Allied Health Professions (NMAHP) Research Unit, which is supported by the Chief Scientist Office of the Scottish Government. Pauline Campbell is supported by the Chief Nurses Office of the Scottish Government

    Exploiting the causal tensor network structure of quantum processes to efficiently simulate non-Markovian path integrals

    Full text link
    In the path integral formulation of the evolution of an open quantum system coupled to a Gaussian, non-interacting environment, the dynamical contribution of the latter is encoded in an object called the influence functional. Here, we relate the influence functional to the process tensor -- a more general representation of a quantum stochastic process -- describing the evolution. We then use this connection to motivate a tensor network algorithm for the simulation of multi-time correlations in open systems, building on recent work where the influence functional is represented in terms of time evolving matrix product operators. By exploiting the symmetries of the influence functional, we are able to use our algorithm to achieve orders-of-magnitude improvement in the efficiency of the resulting numerical simulation. Our improved algorithm is then applied to compute exact phonon emission spectra for the spin-boson model with strong coupling, demonstrating a significant divergence from spectra derived under commonly used assumptions of memorylessness.Comment: 6+5 pages, 4 figure
    corecore