15,063 research outputs found
Imaging Transport Resonances in the Quantum Hall Effect
We use a scanning capacitance probe to image transport in the quantum Hall
system. Applying a DC bias voltage to the tip induces a ring-shaped
incompressible strip (IS) in the 2D electron system (2DES) that moves with the
tip. At certain tip positions, short-range disorder in the 2DES creates a
quantum dot island in the IS. These islands enable resonant tunneling across
the IS, enhancing its conductance by more than four orders of magnitude. The
images provide a quantitative measure of disorder and suggest resonant
tunneling as the primary mechanism for transport across ISs.Comment: 4 pages, 4 figures, submitted to PRL. For movies and additional
infomation, see http://electron.mit.edu/scanning/; Added scale bars to
images, revised discussion of figure 3, other minor change
Observation of a cyclotron harmonic spike in microwave-induced resistances in ultraclean GaAs/AlGaAs quantum wells
We report the observation of a colossal, narrow resistance peak that arises
in ultraclean (mobility 3X10^7cm^2/Vs) GaAs/AlGaAs quantum wells (QWs) under
millimeterwave irradiation and a weak magnetic field. Such a spike is
superposed on the 2nd harmonic microwave-induced resistance oscillations (MIRO)
but having an amplitude > 300% of the MIRO, and a typical FWHM ~50 mK,
comparable with the Landau level width. Systematic studies show a correlation
between the spike and a pronounced negative magnetoresistance in these QWs,
suggesting a mechanism based on the interplay of strong scatterers and smooth
disorder. Alternatively, the spike may be interpreted as a manifestation of
quantum interference between the quadrupole resonance and the higher-order
cyclotron transition in well-separated Landau levels.Comment: 4pages, 4figure
Area dependence of interlayer tunneling in strongly correlated bilayer two-dimensional electron systems at ν_T = 1
The area and perimeter dependence of the Josephson-like interlayer tunneling signature of the coherent ν_T = 1 quantum Hall phase in bilayer two-dimensional electron systems is examined. Electrostatic top gates of various sizes and shapes are used to locally define distinct ν_T = 1 regions in the same sample. Near the phase boundary with the incoherent ν_T = 1 state at large layer separation, our results demonstrate that the tunneling conductance in the coherent phase is closely proportional to the total area of the tunneling region. This implies that tunneling at ν_T = 1 is a bulk phenomenon in this regime
Current-induced nuclear-spin activation in a two-dimensional electron gas
Electrically detected nuclear magnetic resonance was studied in detail in a
two-dimensional electron gas as a function of current bias and temperature. We
show that applying a relatively modest dc-current bias, I_dc ~ 0.5 microAmps,
can induce a re-entrant and even enhanced nuclear spin signal compared with the
signal obtained under similar thermal equilibrium conditions at zero current
bias. Our observations suggest that dynamic nuclear spin polarization by small
current flow is possible in a two-dimensional electron gas, allowing for easy
manipulation of the nuclear spin by simple switching of a dc current.Comment: 5 pages, 3 fig
A spin foam model for pure gauge theory coupled to quantum gravity
We propose a spin foam model for pure gauge fields coupled to Riemannian
quantum gravity in four dimensions. The model is formulated for the
triangulation of a four-manifold which is given merely combinatorially. The
Riemannian Barrett--Crane model provides the gravity sector of our model and
dynamically assigns geometric data to the given combinatorial triangulation.
The gauge theory sector is a lattice gauge theory living on the same
triangulation and obtains from the gravity sector the geometric information
which is required to calculate the Yang--Mills action. The model is designed so
that one obtains a continuum approximation of the gauge theory sector at an
effective level, similarly to the continuum limit of lattice gauge theory, when
the typical length scale of gravity is much smaller than the Yang--Mills scale.Comment: 18 pages, LaTeX, 1 figure, v2: details clarified, references adde
Two-dimensional quantum Yang-Mills theory with corners
The solution of quantum Yang-Mills theory on arbitrary compact two-manifolds
is well known. We bring this solution into a TQFT-like form and extend it to
include corners. Our formulation is based on an axiomatic system that we hope
is flexible enough to capture actual quantum field theories also in higher
dimensions. We motivate this axiomatic system from a formal
Schroedinger-Feynman quantization procedure. We also discuss the physical
meaning of unitarity, the concept of vacuum, (partial) Wilson loops and
non-orientable surfaces.Comment: 31 pages, 6 figures, LaTeX + AMS; minor corrections, reference
update
- …