18,536 research outputs found

    On the duality in CPT-even Lorentz-breaking theories

    Get PDF
    In this paper, we generalize the duality between self-dual and Maxwell-Chern-Simons theories for the case of a CPT-even Lorentz-breaking extension of these theories. The duality is demonstrated with use of the gauge embedding procedure, both in free and coupled cases, and with the master action approach. The physical spectra of both Lorentz-breaking theories are studied. The massive poles are shown to coincide and to respect the requirements for unitarity and causality at tree level. The extra massless poles which are present in the dualized model are shown to be nondynamical.Comment: 17 pages, version accepted to EPJ

    Accretion and activity on the post-common-envelope binary RR~Cae

    Full text link
    Current scenarios for the evolution of interacting close binaries - such as cataclysmic variables (CVs) - rely mainly on our understanding of low-mass star angular momentum loss (AML) mechanisms. The coupling of stellar wind with its magnetic field, i.e., magnetic braking, is the most promising mechanism to drive AML in these stars. There are basically two properties driving magnetic braking: the stellar magnetic field and the stellar wind. Understanding the mechanisms that drive AML therefore requires a comprehensive understanding of these two properties. RRCae is a well-known nearby (d=20pc) eclipsing DA+M binary with an orbital period of P=7.29h. The system harbors a metal-rich cool white dwarf (WD) and a highly active M-dwarf locked in synchronous rotation. The metallicity of the WD suggests that wind accretion is taking place, which provides a good opportunity to obtain the mass-loss rate of the M-dwarf component. We analyzed multi-epoch time-resolved high-resolution spectra of RRCae in search for traces of magnetic activity and accretion. We selected a number of well-known activity indicators and studied their short and long-term behavior. Indirect-imaging tomographic techniques were also applied to provide the surface brightness distribution of the magnetically active M-dwarf, and reveals a polar feature similar to those observed in fast-rotating solar-type stars. The blue part of the spectrum was modeled using a atmosphere model to constrain the WD properties and its metal enrichment. The latter was used to improve the determination of the mass-accretion rate from the M-dwarf wind. The presence of metals in the WD spectrum suggests that this component arises from accretion of the M-dwarf wind. A model fit to the WD gives Teff=(7260+/-250)K and logg=(7.8+/-0.1) dex with a metallicity of =(-2.8+/-0.1)dex, and a mass-accretion rate of dotMacc=(7+/-2)x1e-16Msun/yr.Comment: 14 pages, 7 Figures, 6 Table
    • …
    corecore