2,161 research outputs found
Challenges in imaging and predictive modeling of rhizosphere processes
Background Plant-soil interaction is central to human food production and ecosystem function. Thus, it is essential to not only understand, but also to develop predictive mathematical models which can be used to assess how climate and soil management practices will affect these interactions. Scope In this paper we review the current developments in structural and chemical imaging of rhizosphere processes within the context of multiscale mathematical image based modeling. We outline areas that need more research and areas which would benefit from more detailed understanding. Conclusions We conclude that the combination of structural and chemical imaging with modeling is an incredibly powerful tool which is fundamental for understanding how plant roots interact with soil. We emphasize the need for more researchers to be attracted to this area that is so fertile for future discoveries. Finally, model building must go hand in hand with experiments. In particular, there is a real need to integrate rhizosphere structural and chemical imaging with modeling for better understanding of the rhizosphere processes leading to models which explicitly account for pore scale processes
Game-based meditation therapy to improve posttraumatic stress and neurobiological stress systems in traumatized adolescents:Protocol for a randomized controlled trial
Background: Many adolescents in residential care have been exposed to prolonged traumatic experiences such as violence, neglect, or abuse. Consequently, they suffer from posttraumatic stress. This not only negatively affects psychological and behavioral outcomes (eg, increased anxiety, depression, and aggression) but also has adverse effects on physiological outcomes, in particular on their neurobiological stress systems. Although current evidence-based treatment options are effective, they have their limitations. An alternative to traditional trauma treatment is meditation-based treatment that focuses on stress regulation and relaxation. Muse is a game-based meditation intervention that makes use of adolescents’ intrinsic motivation. The neurofeedback element reinforces relaxation abilities. Objective: This paper describes the protocol for a randomized controlled trial in which the goal is to examine the effectiveness of Muse (InteraXon Inc) in reducing posttraumatic stress and normalizing neurobiological stress systems in a sample of traumatized adolescents in residential care. Methods: This will be a multicenter, multi-informant, and multimethod randomized controlled trial. Participants will be adolescents (N=80), aged 10 to 18 years, with clinical levels of posttraumatic symptoms, who are randomized to receive either the Muse therapy sessions and treatment as usual (intervention) or treatment as usual alone (control). Data will be collected at 3 measurement instances: pretest (T1), posttest (T2), and at 2-month follow-up. Primary outcomes will be posttraumatic symptoms (self-report and mentor report) and stress (self-report) at posttest. Secondary outcomes will be neurobiological stress parameters under both resting and acute stress conditions, and anxiety, depression, and aggression at posttest. Secondary outcomes also include all measures at 2-month follow-up: posttraumatic symptoms, stress, anxiety, depression aggression, and neurobiological resting parameters. Results: The medical-ethical committee Arnhem-Nijmegen (NL58674.091.16) approved the trial on November 15, 2017. The study was registered on December 2, 2017. Participant enrollment started in January 2018, and the results of the study are expected to be published in spring or summer 2021. Conclusions: Study results will demonstrate whether game-based meditation therapy improves posttraumatic stress and neurobiological stress systems, and whether it is more effective than treatment as usual alone for traumatized adolescents
From dust bowl to dust bowl:soils are still very much a frontier of science
When the Soil Science Society of America was created, 75 yr ago, the USA was suffering from major dust storms, causing the loss of enormous amounts of topsoil as well as human lives. These catastrophic events reminded public officials that soils are essential to society’s well-being. The Soil Conservation Service was founded and farmers were encouraged to implement erosion mitigation practices. Still, many questions about soil processes remained poorly understood and controversial. In this article, we argue that the current status of soils worldwide parallels that in the USA at the beginning of the 20th century. Dust bowls and large-scale soil degradation occur over vast regions in a number of countries. Perhaps more so even than in the past, soils currently have the potential to affect populations critically in several other ways as well, from their effect on global climate change, to the toxicity of brownfield soils in urban settings. Even though our collective understanding of soil processes has experienced significant advances since 1936, many basic questions still remain unanswered, for example whether or not a switch to no-till agriculture promotes C sequestration in soils, or how to account for microscale heterogeneity in the modeling of soil organic matter transformation. Given the enormity of the challenges raised by our (ab)uses of soils, one may consider that if we do not address them rapidly, and in the process heed the example of U.S. public officials in the 1930s who took swift action, humanity may not get a chance to explore other frontiers of science in the future. From this perspective, insistence on the fact that soils are critical to life on earth, and indeed to the survival of humans, may again stimulate interest in soils among the public, generate support for soil research, and attract new generations of students to study soils
Precision high voltage divider for the KATRIN experiment
The Karlsruhe Tritium Neutrino Experiment (KATRIN) aims to determine the
absolute mass of the electron antineutrino from a precise measurement of the
tritium beta-spectrum near its endpoint at 18.6 keV with a sensitivity of 0.2
eV. KATRIN uses an electrostatic retardation spectrometer of MAC-E filter type
for which it is crucial to monitor high voltages of up to 35 kV with a
precision and long-term stability at the ppm level. Since devices capable of
this precision are not commercially available, a new high voltage divider for
direct voltages of up to 35 kV has been designed, following the new concept of
the standard divider for direct voltages of up to 100 kV developed at the
Physikalisch-Technische Bundesanstalt (PTB). The electrical and mechanical
design of the divider, the screening procedure for the selection of the
precision resistors, and the results of the investigation and calibration at
PTB are reported here. During the latter, uncertainties at the low ppm level
have been deduced for the new divider, thus qualifying it for the precision
measurements of the KATRIN experiment.Comment: 22 pages, 12 figure
Validity of the Empatica E4 wristband to measure heart rate variability (HRV) parameters:A comparison to electrocardiography (ECG)
Wearable monitoring devices are an innovative way to measure heart rate (HR) and heart rate variability (HRV), however, there is still debate about the validity of these wearables. This study aimed to validate the accuracy and predictive value of the Empatica E4 wristband against the VU University Ambulatory Monitoring System (VU-AMS) in a clinical population of traumatized adolescents in residential care. A sample of 345 recordings of both the Empatica E4 wristband and the VU-AMS was derived from a feasibility study that included fifteen participants. They wore both devices during two experimental testing and twelve intervention sessions. We used correlations, cross-correlations, Mann-Whitney tests, difference factors, Bland-Altman plots, and Limits of Agreement to evaluate differences in outcomes between devices. Significant correlations were found between Empatica E4 and VU-AMS recordings for HR, SDNN, RMSSD, and HF recordings. There was a significant difference between the devices for all parameters but HR, although effect sizes were small for SDNN, LF, and HF. For all parameters but RMSSD, testing outcomes of the two devices led to the same conclusions regarding significance. The Empatica E4 wristband provides a new opportunity to measure HRV in an unobtrusive way. Results of this study indicate the potential of the Empatica E4 as a practical and valid tool for research on HR and HRV under non-movement conditions. While more research needs to be conducted, this study could be considered as a first step to support the use of HRV recordings provided by wearables
Testicular Adrenal Rest Tumours in Congenital Adrenal Hyperplasia
In adult patients with congenital adrenal hyperplasia (CAH), the presence
of testicular adrenal rest tumours (TART) is an important complication leading to
gonadal dysfunction and infertility. These tumours can be already found in childhood and puberty. In this paper, we review the embryological, histological, biochemical,
and clinical features of TART and discuss treatment options
Optimization by Quantum Annealing: Lessons from hard 3-SAT cases
The Path Integral Monte Carlo simulated Quantum Annealing algorithm is
applied to the optimization of a large hard instance of the Random 3-SAT
Problem (N=10000). The dynamical behavior of the quantum and the classical
annealing are compared, showing important qualitative differences in the way of
exploring the complex energy landscape of the combinatorial optimization
problem. At variance with the results obtained for the Ising spin glass and for
the Traveling Salesman Problem, in the present case the linear-schedule Quantum
Annealing performance is definitely worse than Classical Annealing.
Nevertheless, a quantum cooling protocol based on field-cycling and able to
outperform standard classical simulated annealing over short time scales is
introduced.Comment: 10 pages, 6 figures, submitted to PR
Imaging Fourier transform spectrometers for environmental sensing
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/77073/1/AIAA-1998-291-523.pd
MASCARA-2 b: A hot Jupiter transiting the A-star HD185603
In this paper we present MASCARA-2 b, a hot Jupiter transiting the
A2 star HD 185603. Since early 2015, MASCARA has taken more than 1.6 million
flux measurements of the star, corresponding to a total of almost 3000 hours of
observations, revealing a periodic dimming in the flux with a depth of .
Photometric follow-up observations were performed with the NITES and IAC80
telescopes and spectroscopic measurements were obtained with the Hertzsprung
SONG telescope. We find MASCARA-2 b orbits HD 185603 with a period of
at a distance of , has a radius of and place a
upper limit on the mass of . HD 185603 is a
rapidly rotating early-type star with an effective temperature of
and a mass and radius of
, , respectively. Contrary
to most other hot Jupiters transiting early-type stars, the projected planet
orbital axis and stellar spin axis are found to be aligned with . The brightness of the host star and the high equilibrium
temperature, , of MASCARA-2 b make it a suitable target for
atmospheric studies from the ground and space. Of particular interest is the
detection of TiO, which has recently been detected in the similarly hot planets
WASP-33 b and WASP-19 b.Comment: 8 pages, 4 figures, Accepted for publication in A&
High-accuracy Penning trap mass measurements with stored and cooled exotic ions
The technique of Penning trap mass spectrometry is briefly reviewed
particularly in view of precision experiments on unstable nuclei, performed at
different facilities worldwide. Selected examples of recent results emphasize
the importance of high-precision mass measurements in various fields of
physics
- …