6,160 research outputs found

    Exciting a d-density wave in an optical lattice with driven tunneling

    Get PDF
    Quantum phases with unusual symmetries may play a key role for the understanding of solid state systems at low temperatures. We propose a realistic scenario, well in reach of present experimental techniques, which should permit to produce a stationary quantum state with dx2−y2d_{x^2-y^2}-symmetry in a two-dimensional bosonic optical square lattice. This state, characterized by alternating rotational flux in each plaquette, arises from driven tunneling implemented by a stimulated Raman scattering process. We discuss bosons in a square lattice, however, more complex systems involving other lattice geometries appear possible.Comment: 4 pages, 3 figure

    Creep of current-driven domain-wall lines: intrinsic versus extrinsic pinning

    Full text link
    We present a model for current-driven motion of a magnetic domain-wall line, in which the dynamics of the domain wall is equivalent to that of an overdamped vortex line in an anisotropic pinning potential. This potential has both extrinsic contributions due to, e.g., sample inhomogeneities, and an intrinsic contribution due to magnetic anisotropy. We obtain results for the domain-wall velocity as a function of current for various regimes of pinning. In particular, we find that the exponent characterizing the creep regime depends strongly on the presence of a dissipative spin transfer torque. We discuss our results in the light of recent experiments on current-driven domain-wall creep in ferromagnetic semiconductors, and suggest further experiments to corroborate our model.Comment: For figure in GIF format, see http://www.phys.uu.nl/~duine/mapping.gif v2: (hopefully) visible EPS figure added. v2: expanded new versio

    Current-driven and field-driven domain walls at nonzero temperature

    Full text link
    We present a model for the dynamics of current- and field-driven domain-wall lines at nonzero temperature. We compute thermally-averaged drift velocities from the Fokker-Planck equation that describes the nonzero-temperature dynamics of the domain wall. As special limits of this general description, we describe rigid domain walls as well as vortex domain walls. In these limits, we determine also depinning times of the domain wall from an extrinsic pinning potential. We compare our theory with previous theoretical and experimental work

    Therapeutic Potential of Lovastatin in Multiple Sclerosis

    Get PDF

    Vortex-lattice pinning in two-component Bose-Einstein condensates

    Full text link
    We investigate the vortex-lattice structure for single- and two-component Bose-Einstein condensates in the presence of an optical lattice, which acts as a pinning potential for the vortices. The problem is considered in the mean-field quantum-Hall regime, which is reached when the rotation frequency Ω\Omega of the condensate in a radially symmetric trap approaches the (radial) trapping frequency ω\omega and the interactions between the atoms are weak. We determine the vortex-lattice phase diagram as a function of optical-lattice strength and geometry. In the limit of strong pinning the vortices are always pinned at the maxima of the optical-lattice potential, similar to the slow-rotation case. At intermediate pinning strength, however, due to the competition between interactions and pinning energy, a structure arises for the two-component case where the vortices are pinned on lines of minimal potential
    • …
    corecore