1,364 research outputs found
Mode locking of vortex matter driven through mesoscopic channels
We investigated the driven dynamics of vortices confined to mesoscopic flow
channels by means of a dc-rf interference technique. The observed mode-locking
steps in the -curves provide detailed information on how the number of rows
and lattice structure in the channel change with magnetic field. Minima in flow
stress occur when an integer number of rows is moving coherently, while maxima
appear when incoherent motion of mixed and row configurations is
predominant. Simulations show that the enhanced pinning at mismatch originates
from quasi-static fault zones with misoriented edge dislocations induced by
disorder in the channel edges.Comment: some minor changes were made, 4 pages, 4 figures, accepted for
publication in Phys. Rev. Let
Oxygen pressure-tuned epitaxy and optoelectronic properties of laser-deposited ZnO films on sapphire
A Computer-Aided Method to Expedite the Evaluation of Prognosis for Childhood Acute Lymphoblastic Leukemia
This study presented a fully-automated computer-aided method (scheme) to detect metaphase chromosomes depicted on microscopic digital images, count the total number of chromosomes in each metaphase cell, compute the DNA index, and correlate the results to the prognosis of childhood acute lymphoblastic leukemia (ALL). The computer scheme first uses image filtering, threshold, and labeling algorithms to segment and count the number of the suspicious “chromosome,” and then computes a feature vector for each “detected chromosome.” Based on these features, a knowledge-based classifier is used to eliminate those “non-chromosome” objects (i.e., inter-phase cells, stain debris, and other kinds of background noises). Due to the possible overlap of the chromosomes, a classification criterion was used to identify the overlapped chromosomes and adjust the initially counted number of the total chromosomes in each image. In this preliminary study with 60 testing images (depicting metaphase chromosome cells) acquired from three pediatric patients, the computer scheme generated results matched with the diagnostic results provided by the clinical cytogeneticists. The results demonstrated the feasibility or potential of using a computerized method to replace the tedious and the reader-dependent diagnostic methods commonly used in genetic laboratories to date.Yeshttps://us.sagepub.com/en-us/nam/manuscript-submission-guideline
Electron beam and optical depth profiling of quasibulk GaN
Electron beam and optical depth profiling of thick (5.5-64 mu m) quasibulk n-type GaN samples, grown by hydride vapor-phase epitaxy, were carried out using electron beam induced current (EBIC), microphotoluminescence (PL), and transmission electron microscopy (TEM). The minority carrier diffusion length, L, was found to increase linearly from 0.25 mu m, at a distance of about 5 mu m from the GaN/sapphire interface, to 0.63 mu m at the GaN surface, for a 36-mu m-thick sample. The increase in L was accompanied by a corresponding increase in PL band-to-band radiative transition intensity as a function of distance from the GaN/sapphire interface. We attribute the latter changes in PL intensity and minority carrier diffusion length to a reduced carrier mobility and lifetime at the interface, due to scattering at threading dislocations. The results of EBIC and PL measurements are in good agreement with the values for dislocation density obtained using TEM
Shapiro steps in a superconducting film with an antidot lattice
Shapiro voltage steps at voltages V_n=nV_0 (n integer) have been observed in
the voltage-current characteristics of a superconducting film with a square
lattice of perforating microholes (antidots)in the presence of radiofrequent
radiation. These equidistant steps appear at the second matching field H_2 when
the flow of the interstitial vortex lattice in the periodic potential created
by the antidots and the vortices trapped by them, is in phase with the applied
rf frequency. Therefore, the observation of Shapiro steps clearly reveals the
presence of mobile intersitial vortices in superconducting films with regular
pinning arrays. The interstitial vortices, moved by the driving current,
coexist with immobile vortices strongly pinned at the antidots.Comment: 6 pages text, 3 EPS figures, RevTeX, accepted for publication in PRB
Rapid Communication
Anisotropic vortex pinning in superconductors with a square array of rectangular submicron holes
We investigate vortex pinning in thin superconducting films with a square
array of rectangular submicron holes ("antidots"). Two types of antidots are
considered: antidots fully perforating the superconducting film, and "blind
antidots", holes that perforate the film only up to a certain depth. In both
systems, we observe a distinct anisotropy in the pinning properties, reflected
in the critical current Ic, depending on the direction of the applied
electrical current: parallel to the long side of the antidots or perpendicular
to it. Although the mechanism responsible for the effect is very different in
the two systems, they both show a higher critical current and a sharper
IV-transition when the current is applied along the long side of the
rectangular antidots
Self-compensation in semiconductors: The Zn vacancy in Ga-doped ZnO
Self-compensation, the tendency of a crystal to lower its energy by forming point defects to counter the effects of a dopant, is here quantitatively proven. Based on a new theoretical formalism and several different experimental techniques, we demonstrate that the addition of 1.4 × 10 exp 21-cm exp −3 Ga donors in ZnO causes the lattice to form 1.7 × 10 exp 20-cm exp −3 Zn-vacancy acceptors. The calculated VZn formation energy of 0.2 eV is consistent with predictions from density functional theory. Our formalism is of general validity and can be used to investigate self-compensation in any degenerate semiconductor material.Peer reviewe
Incommensuration Effects and Dynamics in Vortex Chains
We examine the motion of one-dimensional (1D) vortex matter embedded in a 2D
vortex system with weak pinning using numerical simulations. We confirm the
conjecture of Matsuda et al. [Science 294, 2136 (2001)] that the onset of the
temperature induced motion of the chain is due to an incommensuration effect of
the chain with the periodic potential created by the bulk vortices. In
addition, under an applied driving force we find a two stage depinning
transition, where the initial depinning of the vortex chain occurs through
soliton like pulses. When an ac drive is added to the dc drive, we observe
phase locking of the moving vortex chain.Comment: 4 pages, 4 postscript figure
- …