458 research outputs found

    The Structure of the Outer Halo of the Galaxy and its Relationship to Nearby Large-Scale Structure

    Get PDF
    We present evidence to support an earlier indication that the Galaxy is embedded in an extended, highly inclined, triaxial halo outlined by the spatial distribution of companion galaxies to the Milky Way. Signatures of this spatial distribution are seen in 1) the angular variation of the radial-velocity dispersion of the companion galaxies, 2) the spatial distribution of the M~31 sub-group of galaxies, 3) the spatial distribution of the isolated, mainly dwarf irregular, galaxies of the Local Group, 4) the velocity anisotropy quadrupole of a sub-group of high-velocity clouds, and 5) the spatial distribution of galaxies in the Coma-Sculptor cloud. Tidal effects of M~31 and surrounding galaxies on the Galaxy are not strong enough to have affected the observed structure. We conclude that this distribution is a reflection of initial conditions. A simple galaxy formation scenario is proposed which ties together the results found here with those of Holmberg (1969) and Zaritsky et al. (1997) on the peculiar distribution of satellites around a large sample of spiral galaxies.Comment: Accepted for publication in the Astron J., March 2000, 12 pages with 1 figur

    Galactic Kinematics Towards the South Galactic Pole. First Results from the Yale-San Juan Southern Proper-Motion Program

    Get PDF
    The predictions from a Galactic Structure and Kinematic model code are compared to the color counts and absolute proper-motions derived from the Southern Proper-Motion survey covering more than 700 deg⁥2\deg^2 toward the South Galactic Pole in the range 9<BJ≀199 < B_{\rm J} \le 19. The theoretical assumptions and associated computational procedures, the geometry for the kinematic model, and the adopted parameters are presented in detail and compared to other Galactic Kinematic models of its kind. The data to which the model is compared consists of more than 30,000 randomly selected stars, and it is best fit by models with a solar peculiar motion of +5 km s−1^{-1} in the V-component (pointing in the direction of Galactic rotation), a large LSR speed of 270 km s−1^{-1}, and a (disk) velocity ellipsoid that always points towards the Galactic center. The absolute proper-motions in the U-component indicate a solar peculiar motion of 11.0±1.511.0 \pm 1.5 km s−1^{-1}, with no need for a local expansion or contraction term. The fainter absolute motions show an indication that the thick-disk must exhibit a rather steep velocity gradient of about -36 km s−1^{-1} kpc−1^{-1} with respect to the LSR. We are not able to set constraints on the overall rotation for the halo, nor on the thick-disk or halo velocity dispersions. Some substructure in the U & V proper-motions could be present in the brighter bins 10<BJ<1310 < B_{\rm J} < 13, and it might be indicative of (disk) moving groups.Comment: 24 double-column pages, 12 tables, AAS Latex macros v4.0, 19 B&W figures, 1 color figure. Accepted for publication on The Astronomical Journa

    Kinematics of Metal-Poor Stars in the Galaxy. II. Proper Motions for a Large Non-Kinematically Selected Sample

    Full text link
    We present a revised catalog of 2106 Galactic stars, selected without kinematic bias, and with available radial velocities, distance estimates, and metal abundances in the range 0.0 <= [Fe/H] <= -4.0. This update of the Beers and Sommer-Larsen (1995) catalog includes newly-derived homogeneous photometric distance estimates, revised radial velocities for a number of stars with recently obtained high-resolution spectra, and refined metallicities for stars originally identified in the HK objective-prism survey (which account for nearly half of the catalog) based on a recent re-calibration. A subset of 1258 stars in this catalog have available proper motions, based on measurements obtained with the Hipparcos astrometry satellite, or taken from the updated Astrographic Catalogue (AC 2000; second epoch positions from either the Hubble Space Telescope Guide Star Catalog or the Tycho Catalogue), the Yale/San Juan Southern Proper Motion (SPM) Catalog 2.0, and the Lick Northern Proper Motion (NPM1) Catalog. Our present catalog includes 388 RR Lyrae variables (182 of which are newly added), 38 variables of other types, and 1680 non-variables, with distances in the range 0.1 to 40 kpc.Comment: 31 pages, including 8 figures, to appear in AJ (June 2000), full paper with all figures embedded available at http://pluto.mtk.nao.ac.jp/people/chiba/preprint/halo4

    Very Red and Extremely Red Galaxies in the Fields of z ~ 1.5 Radio-Loud Quasars

    Full text link
    We previously identified an excess of mostly red galaxies around 31 RLQs at z=1-2. These fields have an ERO (extremely red object, R-K>6) density 2.7 times higher than the field. Assuming the EROs are passively evolved galaxies at the quasar redshifts, they have characteristic luminosities of only ~L^*. We also present new observations of four z~1.54 RLQ fields: (1) Wide-field J & Ks data confirm an Abell richness ~2 excess within 140" of Q0835+580 but an excess only within 50" of Q1126+101. (2) In 3 fields we present deep narrow-band redshifted H-alpha observations. We detect five candidate galaxies at the quasar redshifts, a surface density 2.5x higher than the field. (3) SCUBA sub-mm observations of 3 fields detect 2 quasars and 2 galaxies with SEDs best fit as highly reddened galaxies at the quasar z. (4) H-band adaptive optics (AO) imaging is used to estimate redshifts for 2 red, bulge-dominated galaxies using the Kormendy relation. Both have structural redshifts foreground to the quasar, but these are not confirmed by photometric redshifts, possibly because their optical photometry is corrupted by scattered light from the AO guidestar. (5) We use quantitative SED fits to constrain the photometric redshifts z_ph for some galaxies. Most galaxies near Q0835+580 are consistent with being at its redshift, including a candidate very old passively evolving galaxy. Many very & extremely red objects have z_ph z_q, and dust reddening is required to fit most of them, including many objects whose fits also require relatively old stellar populations. Large reddenings of E(B-V)~0.6 are required to fit four J-K selected EROs, though all but one of them have best-fit z_ph>z_q. These objects may represent a population of dusty high-z galaxies underrepresented in optically selected samples. (Abridged)Comment: Missing object 1126.424 added to Table 4; title changed to save people the apparent trouble of reading the abstract. 38 pages, 16 figures, 2 in color; all-PostScript figure version available from http://astro.princeton.edu/~pathall/tp3.ps.g

    An Abundance Analysis for Five Red Horizontal Branch Stars in the Extremely Metal Rich Globular Cluster NGC 6553

    Get PDF
    We provide a high dispersion line-by-line abundance analysis of five red HB stars in the extremely metal rich galactic globular cluster NGC 6553. These red HB stars are significantly hotter than the very cool stars near the tip of the giant branch in such a metal rich globular cluster and hence their spectra are much more amenable to an abundance analysis than would be the case for red giants. We find that the mean [Fe/H] for NGC 6553 is -0.16 dex, comparable to the mean abundance in the galactic bulge found by McWilliam & Rich (1994) and considerably higher than that obtained from an analysis of two red giants in this cluster by Barbuy etal (1999). The relative abundance for the best determined alpha process element (Ca) indicates an excess of alpha process elements of about a factor of two. The metallicity of NGC 6553 reaches the average of the Galactic bulge and of the solar neighborhood.Comment: 29 pages, 6 figures, accepted for publication in the Ap

    A single low-energy, iron-poor supernova as the source of metals in the star SMSS J 031300.36-670839.3

    Get PDF
    The element abundance ratios of four low-mass stars with extremely low metallicities indicate that the gas out of which the stars formed was enriched in each case by at most a few, and potentially only one low-energy, supernova. Such supernovae yield large quantities of light elements such as carbon but very little iron. The dominance of low-energy supernovae is surprising, because it has been expected that the first stars were extremely massive, and that they disintegrated in pair-instability explosions that would rapidly enrich galaxies in iron. What has remained unclear is the yield of iron from the first supernovae, because hitherto no star is unambiguously interpreted as encapsulating the yield of a single supernova. Here we report the optical spectrum of SMSS J031300.36- 670839.3, which shows no evidence of iron (with an upper limit of 10^-7.1 times solar abundance). Based on a comparison of its abundance pattern with those of models, we conclude that the star was seeded with material from a single supernova with an original mass of ~60 Mo (and that the supernova left behind a black hole). Taken together with the previously mentioned low-metallicity stars, we conclude that low-energy supernovae were common in the early Universe, and that such supernovae yield light element enrichment with insignificant iron. Reduced stellar feedback both chemically and mechanically from low-energy supernovae would have enabled first-generation stars to form over an extended period. We speculate that such stars may perhaps have had an important role in the epoch of cosmic reionization and the chemical evolution of early galaxies.Comment: 28 pages, 6 figures, Natur

    The HELLAS2XMM survey: IV. Optical identifications and the evolution of the accretion luminosity in the Universe

    Get PDF
    We present results from the photometric and spectroscopic identification of 122 X-ray sources recently discovered by XMM-Newton in the 2-10 keV band (the HELLAS2XMM 1dF sample). Their flux cover the range 8E-15-4E-13 cgs and the total area surveyed is 0.9 deg2. About 20% of the hard X-ray selected sources have an X-ray to optical flux ratio (X/O) ten times or more higher than that of optically selected AGN. Unlike the faint sources found in the ultra-deep Chandra and XMM-Newton surveys, which reach X-ray (and optical) fluxes more than one order of magnitude lower than the HELLAS2XMM survey sources, many of the extreme X/O sources in our sample have R<=25 and are therefore accessible to optical spectroscopy. We report the identification of 13 sources with X/O>10: 8 are narrow line QSO (i.e. QSO2), four are broad line QSO. We use a combined sample of 317 hard X-ray selected sources (HELLAS2XMM 1dF, CDFN 1Msec, SSA13 and Lockman Hole flux limited samples), 221 with measured z, to evaluate the cosmological evolution of the hard X-ray source's number and luminosity densities. Looking backward in time, the low luminosity sources (logL(2-10keV) = 43-44 erg/s) increase in number at a rate different than the high luminosity sources (logL(2-10keV)>44.5 erg/s), reaching a maximum around z=1 and then levelling off beyond z=2. This translates into an accretion driven luminosity density which is dominated by sources with logL(2-10keV) < 44.5 erg/s up to at least z=1, while the contribution of the same sources and of those with logL(2-10keV)>44.5 erg/s appear to be comparable between z=2 and 4.Comment: v2, minor changes, A&A in pres

    The Dynamical Equilibrium of Galaxy Clusters

    Get PDF
    If a galaxy cluster is effectively in dynamical equilibrium then all galaxy populations within the cluster must have distributions in velocity and position that individually reflect the same underlying mass distribution, although the derived virial masses can be quite different. Specifically, within the CNOC cluster sample the virial radius of the red galaxy population is, on the average, a factor of 2.05±0.342.05 \pm 0.34 smaller than that of the blue population. The red galaxies also have a smaller RMS velocity dispersion, a factor of 1.31±0.131.31 \pm 0.13 within our sample. Consequently, the virial mass calculated from the blue galaxies is 3.5±1.33.5 \pm 1.3 times larger than from the red galaxies. However, applying the Jeans equation of stellar-hydrodynamical equilibrium to the red and blue subsamples separately give statistically identical cluster mass profiles. This is strong evidence that these clusters are effectively equilibrium systems, and therefore empirically demonstrates that the masses in the virialized region are reliably estimated using dynamical techniques.Comment: Submitted for publication in ApJLetts. 12 pages as a uufile, also available at http://manaslu.astro.utoronto.ca/~carlberg/cnoc/br/br.ps.g
    • 

    corecore