2,464 research outputs found
Fibrations on four-folds with trivial canonical bundles
Four-folds with trivial canonical bundles are divided into six classes
according to their holonomy group. We consider examples that are fibred by
abelian surfaces over the projective plane. We construct such fibrations in
five of the six classes, and prove that there is no such fibration in the sixth
class. We classify all such fibrations whose generic fibre is the Jacobian of a
genus two curve.Comment: 28 page
Collision geometry scaling of Au+Au pseudorapidity density from sqrt(s_NN) = 19.6 to 200 GeV
The centrality dependence of the midrapidity charged particle multiplicity in
Au+Au collisions at sqrt(s_NN) = 19.6 and 200 GeV is presented. Within a simple
model, the fraction of hard (scaling with number of binary collisions) to soft
(scaling with number of participant pairs) interactions is consistent with a
value of x = 0.13 +/- 0.01(stat) +/- 0.05(syst) at both energies. The
experimental results at both energies, scaled by inelastic p(pbar)+p collision
data, agree within systematic errors. The ratio of the data was found not to
depend on centrality over the studied range and yields a simple linear scale
factor of R_(200/19.6) = 2.03 +/- 0.02(stat) +/- 0.05(syst).Comment: 5 pages, 4 figures, submitted to PRC-R
Centrality dependence of charged antiparticle to particle ratios near mid-rapidity in d+Au collisions at sqrt(s_NN)=200 GeV
The ratios of the yields of charged antiparticles to particles have been
obtained for pions, kaons, and protons near mid-rapidity for d+Au collisions at
sqrt(s_NN) = 200 GeV as a function of centrality. The reported values represent
the ratio of the yields averaged over the rapidity range of 0.1<y_pi<1.3 and
0<y_(K,p)<0.8, where positive rapidity is in the deuteron direction, and for
transverse momenta 0.1<p_(T)^(pi,K)<1.0 GeV/c and 0.3<p_(T)^(p)<1.0 GeV/c.
Within the uncertainties, a lack of centrality dependence is observed in all
three ratios. The data are compared to results from other systems and model
calculations.Comment: 6 pages, 4 figures, submitted to PR
Charged-Particle Pseudorapidity Distributions in Au+Au Collisions at sqrt(s_NN)=62.4 GeV
The charged-particle pseudorapidity density for Au+Au collisions at
sqrt(s_NN)=62.4 GeV has been measured over a wide range of impact parameters
and compared to results obtained at other energies. As a function of collision
energy, the pseudorapidity distribution grows systematically both in height and
width. The mid-rapidity density is found to grow approximately logarithmically
between AGS energies and the top RHIC energy. As a function of centrality,
there is an approximate factorization of the centrality dependence of the
mid-rapidity yields and the overall multiplicity scale. The new results at
sqrt(s_NN)=62.4 GeV confirm the previously observed phenomenon of ``extended
longitudinal scaling'' in the pseudorapidity distributions when viewed in the
rest frame of one of the colliding nuclei. It is also found that the evolution
of the shape of the distribution with centrality is energy independent, when
viewed in this reference frame. As a function of centrality, the total charged
particle multiplicity scales linearly with the number of participant pairs as
it was observed at other energies.Comment: 6 pages, 7 figures, submitted to Phys. Rev. C - Rapid Communication
Event-by-event fluctuations of azimuthal particle anisotropy in Au+Au collisions at sqrt(s_NN) = 200 GeV
This paper presents the first measurement of event-by-event fluctuations of
the elliptic flow parameter v_2 in Au+Au collisions at sqrt(s_NN) = 200GeV as a
function of collision centrality. The relative non-statistical fluctuations of
the v_2 parameter are found to be approximately 40%. The results, including
contributions from event-by-event elliptic flow fluctuations and from azimuthal
correlations that are unrelated to the reaction plane (non-flow correlations),
establish an upper limit on the magnitude of underlying elliptic flow
fluctuations. This limit is consistent with predictions based on spatial
fluctuations of the participating nucleons in the initial nuclear overlap
region. These results provide important constraints on models of the initial
state and hydrodynamic evolution of relativistic heavy ion collisions.Comment: 5 pages, 2 figures, Published in Phys. Rev. Lett
System size and centrality dependence of charged hadron transverse momentum spectra in Au+Au and Cu+Cu collisions at sqrt(s) = 62.4 and 200 GeV
We present transverse momentum distributions of charged hadrons produced in
Cu+Cu collisions at sqrt(s) = 62.4 and 200 GeV. The spectra are measured for
transverse momenta of 0.25 < p_T < 5.0 GeV/c at sqrt(s) = 62.4 GeV and 0.25 <
p_T < 7.0 GeV/c at sqrt(s) = 200 GeV, in a pseudo-rapidity range of 0.2 < eta <
1.4. The nuclear modification factor R_AA is calculated relative to p+p data at
both collision energies as a function of collision centrality. At a given
collision energy and fractional cross-section, R_AA is observed to be
systematically larger in Cu+Cu collisions compared to Au+Au. However, for the
same number of participating nucleons, R_AA is essentially the same in both
systems over the measured range of p_T, in spite of the significantly different
geometries of the Cu+Cu and Au+Au systems.Comment: 4 pages, 5 figures, submitted to Phys. Rev. Let
Pseudorapidity and centrality dependence of the collective flow of charged particles in Au+Au collisions at sqrt{s_NN} = 130 GeV
This paper describes the measurement of collective flow for charged particles
in Au+Au collisions at sqrt{s_NN}} = 130 GeV using the PHOBOS detector at the
Relativistic Heavy Ion Collider (RHIC). An azimuthal anisotropy is observed in
the charged particle hit distribution in the PHOBOS multiplicity detector. This
anisotropy is presented over a wide range of pseudorapidity (eta) for the first
time at this energy. The size of the anisotropy (v_{2}) is thought to probe the
degree of equilibration achieved in these collisions. The result here,averaged
over momenta and particle species, is observed to reach 7% for peripheral
collisions at mid-rapidity, falling off with centrality and increasing |eta|.
Data are presented as a function of centrality for |eta|<1.0 and as a function
of eta, averaged over centrality, in the angular region -5.0<eta<5.3. These
results call into question the common assumption of longitudinal boost
invariance over a large region of rapidity in RHIC collisions.Comment: 5 pages, 4 figures, submitted to Physical Review Letter
Centrality and pseudorapidity dependence of elliptic flow for charged hadrons in Au+Au collisions at sqrt(sNN) = 200 GeV
This paper describes the measurement of elliptic flow for charged particles
in Au+Au collisions at sqrt(sNN)=200 GeV using the PHOBOS detector at the
Relativistic Heavy Ion Collider (RHIC). The measured azimuthal anisotropy is
presented over a wide range of pseudorapidity for three broad collision
centrality classes for the first time at this energy. Two distinct methods of
extracting the flow signal were used in order to reduce systematic
uncertainties. The elliptic flow falls sharply with increasing eta at 200 GeV
for all the centralities studied, as observed for minimum-bias collisions at
sqrt(sNN)=130 GeV.Comment: Final published version: the most substantive change to the paper is
the inclusion of a complete description of how the errors from the hit-based
and track-based analyses are merged to produce the 90% C.L. errors quoted for
the combined results shown in Fig.
System Size, Energy and Centrality Dependence of Pseudorapidity Distributions of Charged Particles in Relativistic Heavy Ion Collisions
We present the first measurements of the pseudorapidity distribution of
primary charged particles in Cu+Cu collisions as a function of collision
centrality and energy, \sqrtsnn = 22.4, 62.4 and 200 GeV, over a wide range of
pseudorapidity, using the PHOBOS detector. Making a global comparison of Cu+Cu
and Au+Au results, we find that the total number of produced charged particles
and the rough shape (height and width) of the pseudorapidity distributions are
determined by the number of nucleon participants. More detailed studies reveal
that a more precise matching of the shape of the Cu+Cu and Au+Au pseudorapidity
distributions over the full range of pseudorapidity occurs for the same
Npart/2A value rather than the same Npart value. In other words, it is the
collision geometry rather than just the number of nucleon participants that
drives the detailed shape of the pseudorapidity distribution and its centrality
dependence at RHIC energies.Comment: Submitted to Physical Review Letter
Non-flow correlations and elliptic flow fluctuations in gold-gold collisions at sqrt(s_NN)= 200 GeV
This paper presents results on event-by-event elliptic flow fluctuations in
Au+Au collisions at sqrt(s_NN)=200Gev, where the contribution from non-flow
correlations has been subtracted. An analysis method is introduced to measure
non-flow correlations, relying on the assumption that non-flow correlations are
most prominent at short ranges (Delta eta < 2). Assuming that non-flow
correlations are of the order that is observed in p+p collisions for long range
correlations (Delta eta > 2), relative elliptic flow fluctuations of
approximately 30-40% are observed. These results are consistent with
predictions based on spatial fluctuations of the participating nucleons in the
initial nuclear overlap region. It is found that the long range non-flow
correlations in Au+Au collisions would have to be more than an order of
magnitude stronger compared to the p+p data to lead to the observed azimuthal
anisotropy fluctuations with no intrinsic elliptic flow fluctuations.Comment: 9 pages, 7 figures, Published in Phys. Rev.
- …