158 research outputs found

    Bleaching of the post-IR IRSL signal from individual grains of K-feldspar::implications for single-grain dating

    Get PDF
    Post-IR IRSL (pIRIR) signals from K-feldspar grains measured at elevated temperatures are increasingly being used for dating sediments. Unfortunately the pIRIR signal from K-feldspars bleaches more slowly than other signals (e.g. OSL from quartz) upon exposure to daylight, leading to concerns about residual signals remaining at deposition. However, earlier studies have not assessed whether the pIRIR signal bleaches at the same rate in all feldspar grains. In this study laboratory bleaching experiments have been conducted and for the first time the results show that the rate at which the pIRIR signal from individual K-feldspar grains bleach varies. To determine whether grain-to-grain variability in bleaching rate has a dominant control on equivalent dose (De) distributions determined using single grains, analysis was undertaken on three samples with independent age control from different depositional environments (two aeolian and one glaciofluvial). The De value determined from each grain was compared with the rate at which the pIRIR225 signal from the grain bleaches. The bleaching rate of each grain was assessed by giving a 52 Gy dose and measuring the residual De after bleaching for an hour in a solar simulator. There is no clear relationship between the rate at which the pIRIR225 signal of an individual grain bleaches and the magnitude of its De. It is concluded that variability in the bleaching rate of the pIRIR225 signal from one grain to another does not appear to be a dominant control on single grain De distributions

    Site-selective characterisation of electron trapping centres in relation to chemistry, structural state and mineral phases present in single crystal alkali feldspars

    Get PDF
    Feldspars are ubiquitous natural dosimeters widely used in luminescence dating. Despite decades of research, the lattice defects as well as the mechanisms involved in luminescence production in feldspars remain poorly understood. The recently developed method of infrared photoluminescence (IRPL) excitation-emission spectroscopy has revealed the presence of two electron trapping centres emitting IRPL at 1.3 eV and 1.41 eV (IRPL1.3 and IRPL1.41 centres), and it enables detailed investigations into the ground and excited state energies of these centres. Here we make measurements of a range of single crystal alkali feldspars to understand the effects of feldspar chemical composition, crystal structure and framework disorder on the physical characteristics of IRPL1.3 and IRPL1.41 electron trapping centres. Measurements of our sample suite reveals IRPL and IR-radioluminescence (RL) emissions at 1.41 eV, 1.3 eV and, for the first time, at 1.2 eV. Our results show that whilst the IRPL1.3 trapping centre is unaffected by the M site cation occupancy, the presence of IRPL1.41 trapping centres seems to be linked to the presence of K+ ions on M sites. However, no clear trends in IRPL and IR-RL emission energies and signal intensities with chemical composition of the samples were found. Exploring the effect of framework disorder on IRPL1.3 and IRPL1.41 emissions revealed no significant changes to IRPL and IR-RL emission energies or ground state energies of the trapping centres, suggesting that the corresponding defects are not located on bridging O ions. Variations in ground state energies across the whole sample suite range from 2.04 eV to 2.20 eV for the IRPL1.3 centre and from 2.16 eV to 2.46 eV for the IRPL1.41 centre. Variations in trap depth seem to be driven by other factors than sample chemistry, degree of Al3+disorder and number of phases present in a single crystal feldspar. Interestingly, the IR resonance peak is invariant between samples. Regarding the use of IRPL in luminescence dating, we show that optical resetting differs for the three different emissions, with the emission at ∼1.41 eV not being reset in some samples even after 18 h of solar bleaching

    Strategies for equivalent dose determination without heating, suitable for portable luminescence readers

    Get PDF
    This work was supported by the UK Space Agency CREST3 program under grant ST/P001998/1. Research in Next Generation Luminescence methods in Aberystwyth is supported by NERC grant CC003, and by HEFCW infrastructure funding for SPARCL.In recent years a number of portable instruments have been built for measuring the optically stimulated luminescence (OSL) signal from naturally occurring minerals. Some of these instruments have incorporated ionising radiation sources, giving the possibility of determining an equivalent dose (De), but little use has been made of these. One challenge has been that heating samples in this type of equipment is a major engineering challenge, yet methods for De determination use thermal pretreatments to remove charge from unstable traps, making signals arising from irradiation in nature and the laboratory comparable. This paper explores three strategies for obtaining accurate estimates of the De of samples in situations where thermal treatments are not possible: (1) deriving a correction factor based on comparing De values obtained using protocols with and without heating; (2) removing the contribution from the 110 °C TL peak and other unstable defects by component fitting the unheated OSL signal; and (3) adding a small beta dose to the sample prior to measurement of the natural luminescence signal so that the 110 °C TL peak is filled, making this measurement comparable with regeneration measurements where this peak is also populated. All three methods are promising when applied to quartz that has been physically separated from samples using standard laboratory procedures. The next step in this work will be to explore whether such methods can be applied to mixed mineral assemblages as would be encountered in the field.PostprintPeer reviewe

    Dating the Paleolithic:Trapped charge methods and amino acid geochronology

    Get PDF
    Despite the vast array of different geochronological tools available, dating the Paleolithic remains one of the discipline's greatest challenges. This review focuses on two different dating approaches: trapped charge and amino acid geochronology. While differing in their fundamental principles, both exploit time-dependent changes in signals found within crystals to generate a chronology for the material dated and hence, the associated deposits. Within each method, there is a diverse range of signals that can be analyzed, each covering different time ranges, applicable to different materials and suitable for different paleoenvironmental and archaeological contexts. This multiplicity of signals can at first sight appear confusing, but it is a fundamental strength of the techniques, allowing internal checks for consistency and providing more information than simply a chronology. For each technique, we present an overview of the basis for the time-dependent signals and the types of material that can be analyzed, with examples of their archaeological application, as well as their future potential

    Developing a framework of Quaternary dune accumulation in the northern Rub' al-Khali, Arabia

    Get PDF
    Located at the crossroads between Africa and Eurasia, Arabia occupies a pivotal position for human migration and dispersal during the Late Pleistocene. Deducing the timing of humid and arid phases is critical to understanding when the Rub' al-Khali desert acted as a barrier to human movement and settlement. Recent geological mapping in the northern part of the Rub' al-Khali has enabled the Quaternary history of the region to be put into a regional stratigraphical framework. In addition to the active dunes, two significant palaeodune sequences have been identified. Dating of key sections has enabled a chronology of dune accretion and stabilisation to be determined. In addition, previously published optically stimulated luminescence (OSL) dates have been put in their proper stratigraphical context, from which a record of Late Pleistocene dune activity can be constructed. The results indicate the record of dune activity in the northern Rub' al-Khali is preservation limited and is synchronous with humid events driven by the incursion of the Indian Ocean monsoon

    Dynamics of sediment flux to a bathyal continental margin section through the Paleocene–Eocene Thermal Maximum

    Get PDF
    The response of the Earth system to greenhouse-gas-driven warming is of critical importance for the future trajectory of our planetary environment. Hyperthermal events – past climate transients with global-scale warming significantly above background climate variability – can provide insights into the nature and magnitude of these responses. The largest hyperthermal of the Cenozoic was the Paleocene–Eocene Thermal Maximum (PETM ∼ 56 Ma). Here we present new high-resolution bulk sediment stable isotope and major element data for the classic PETM section at Zumaia, Spain. With these data we provide a new detailed stratigraphic correlation to other key deep-ocean and terrestrial PETM reference sections. With this new correlation and age model we are able to demonstrate that detrital sediment accumulation rates within the Zumaia continental margin section increased more than 4-fold during the PETM, representing a radical change in regional hydrology that drove dramatic increases in terrestrial-to-marine sediment flux. Most remarkable is that detrital accumulation rates remain high throughout the body of the PETM, and even reach peak values during the recovery phase of the characteristic PETM carbon isotope excursion (CIE). Using a series of Earth system model inversions, driven by the new Zumaia carbon isotope record, we demonstrate that the silicate weathering feedback alone is insufficient to recover the PETM CIE, and that active organic carbon burial is required to match the observed dynamics of the CIE. Further, we demonstrate that the period of maximum organic carbon sequestration coincides with the peak in detrital accumulation rates observed at Zumaia. Based on these results, we hypothesise that orbital-scale variations in subtropical hydro-climates, and their subsequent impact on sediment dynamics, may contribute to the rapid climate and CIE recovery from peak-PETM conditions

    Timing and pace of ice-sheet withdrawal across the marine-terrestrial transition west of Ireland during the last glaciation

    Get PDF
    Understanding the pace and drivers of marine-based ice-sheet retreat relies upon the integration of numerical ice-sheet models with observations from contemporary polar ice sheets and well-constrained palaeo-glaciological reconstructions. This paper provides a reconstruction of the retreat of the last British–Irish Ice Sheet (BIIS) from the Atlantic shelf west of Ireland during and following the Last Glacial Maximum (LGM). It uses marine-geophysical data and sediment cores dated by radiocarbon, combined with terrestrial cosmogenic nuclide and optically stimulated luminescence dating of onshore ice-marginal landforms, to reconstruct the timing and rate of ice-sheet retreat from the continental shelf and across the adjoining coastline of Ireland, thus including the switch from a marine- to a terrestrially-based ice-sheet margin. Seafloor bathymetric data in the form of moraines and grounding-zone wedges on the continental shelf record an extensive ice sheet west of Ireland during the LGM which advanced to the outer shelf. This interpretation is supported by the presence of dated subglacial tills and overridden glacimarine sediments from across the Porcupine Bank, a westwards extension of the Irish continental shelf. The ice sheet was grounded on the outer shelf at ~26.8 ka cal bp with initial retreat underway by 25.9 ka cal bp. Retreat was not a continuous process but was punctuated by marginal oscillations until ~24.3 ka cal bp. The ice sheet thereafter retreated to the mid-shelf where it formed a large grounding-zone complex at ~23.7 ka cal bp. This retreat occurred in a glacimarine environment. The Aran Islands on the inner continental shelf were ice-free by ~19.5 ka bp and the ice sheet had become largely terrestrially based by 17.3 ka bp. This suggests that the Aran Islands acted to stabilize and slow overall ice-sheet retreat once the BIIS margin had reached the inner shelf. Our results constrain the timing of initial retreat of the BIIS from the outer shelf west of Ireland to the period of minimum global eustatic sea level. Initial retreat was driven, at least in part, by glacio-isostatically induced, high relative sea level. Net rates of ice-sheet retreat across the shelf were slow (62–19 m a−1) and reduced (8 m a−1) as the ice sheet vacated the inner shelf and moved onshore. A picture therefore emerges of an extensive BIIS on the Atlantic shelf west of Ireland, in which early, oscillatory retreat was followed by slow episodic retreat which decelerated further as the ice margin became terrestrially based. More broadly, this demonstrates the importance of localized controls, in particular bed topography, on modulating the retreat of marine-based sectors of ice sheets

    Muscle damage response in female collegiate athletes following repeated sprint activity

    Get PDF
    Exercise induced muscle damage (EIMD) is a well-investigated area, however there is a paucity of data surrounding the damage response in females. The aim of this study was to examine the damage responses from a sport-specific bout of repeated sprints in female athletes. Eleven well-trained females (mean ± SD; age 22 ± 3 y, height 166.6 ± 5.7 cm, mass 62.7 ± 4.5 kg) in the luteal phase of the menstrual cycle completed a repeated sprint protocol designed to induce EIMD (15 × 30 m sprints). Creatine kinase (CK), countermovement jump height (CMJ), knee extensor maximum voluntary contraction force (MVIC), muscle soreness (DOMS), 30 m sprint time and limb girth were recorded pre, post, 24 h, 48 h and 72 h post exercise. CK was elevated at 24, 48 and 72 h (p < 0.05), peaking at 24 h (+418%) and returning towards baseline at 72 h. CMJ height was reduced immediately post, 24 and 48 h (p < 0.05). Sprint performance was also negatively affected immediately post, 24 h, 48 h and 72 h post exercise. Muscle soreness peaked at 48 h (p<0.01) and remained significantly elevated at 72 h post exercise (p<0.01). Limb girth and MVIC did not alter over time. The current study provides new information on the EIMD response in trained females following a sport specific bout of repeated sprints. Importantly, this damage response has the potential to negatively affect performance for several days post-exercise
    • …
    corecore