3,206 research outputs found

    Structure Function Scaling of a 2MASS Extinction Map of Taurus

    Get PDF
    We compute the structure function scaling of a 2MASS extinction map of the Taurus molecular cloud complex. The scaling exponents of the structure functions of the extinction map follow the Boldyrev's velocity structure function scaling of supersonic turbulence. This confirms our previous result based on a spectral map of 13CO J=1-0 covering the same region and suggests that supersonic turbulence is important in the fragmentation of this star--forming cloud.Comment: submitted to Ap

    Strong magnetohydrodynamic turbulence with cross helicity

    Full text link
    Magnetohydrodynamics (MHD) provides the simplest description of magnetic plasma turbulence in a variety of astrophysical and laboratory systems. MHD turbulence with nonzero cross helicity is often called imbalanced, as it implies that the energies of Alfv\'en fluctuations propagating parallel and anti-parallel the background field are not equal. Recent analytical and numerical studies have revealed that at every scale, MHD turbulence consists of regions of positive and negative cross helicity, indicating that such turbulence is inherently locally imbalanced. In this paper, results from high resolution numerical simulations of steady-state incompressible MHD turbulence, with and without cross helicity are presented. It is argued that the inertial range scaling of the energy spectra (E^+ and E^-) of fluctuations moving in opposite directions is independent of the amount of cross-helicity. When cross helicity is nonzero, E^+ and E^- maintain the same scaling, but have differing amplitudes depending on the amount of cross-helicity.Comment: To appear in Physics of Plasma

    Structure Function Scaling in Compressible Super-Alfvenic MHD Turbulence

    Full text link
    Supersonic turbulent flows of magnetized gas are believed to play an important role in the dynamics of star-forming clouds in galaxies. Understanding statistical properties of such flows is crucial for developing a theory of star formation. In this letter we propose a unified approach for obtaining the velocity scaling in compressible and super--Alfv\'{e}nic turbulence, valid for arbitrary sonic Mach number, \ms. We demonstrate with numerical simulations that the scaling can be described with the She--L\'{e}v\^{e}que formalism, where only one parameter, interpreted as the Hausdorff dimension of the most intense dissipative structures, needs to be varied as a function of \ms. Our results thus provide a method for obtaining the velocity scaling in interstellar clouds once their Mach numbers have been inferred from observations.Comment: published in Physical Review Letter

    Amplification of magnetic fields by dynamo action in Gaussian-correlated helical turbulence

    Full text link
    We investigate the growth and structure of magnetic fields amplified by kinematic dynamo action in turbulence with non-zero kinetic helicity. We assume a simple Gaussian velocity correlation tensor, which allows us to consider very large magnetic Reynolds numbers, up to one trillion. We use the kinematic Kazantsev-Kraichnan model of dynamo and find a complete numerical solution for the correlation functions of growing magnetic fields.Comment: 7 pages, 3 figure

    Supersonic turbulence and structure of interstellar molecular clouds

    Get PDF
    The interstellar medium (ISM) provides a unique laboratory for highly supersonic, driven hydrodynamics turbulence. We present a theory of such turbulence, confirm it by numerical simulations, and use the results to explain observational properties of interstellar molecular clouds, the regions where stars are born.Comment: 5 pages, 3 figures include
    • …
    corecore