1,066 research outputs found
Stochastic properties of coastal flooding events – Part 1: convolutional-neural-network-based semantic segmentation for water detection
The frequency and intensity of coastal flooding is expected to accelerate in low-elevation coastal areas due to sea level rise. Coastal flooding due to wave overtopping affects coastal communities and infrastructure; however, it can be difficult to monitor in remote and vulnerable areas. Here we use a camera-based system to measure beach and back-beach flooding as part of the after-storm recovery of an eroded beach on the Texas coast. We analyze high-temporal resolution images of the beach using convolutional neural network (CNN)-based semantic segmentation to study the stochastic properties of flooding events. In the first part of this work, we focus on the application of semantic segmentation to identify water and overtopping events. We train and validate a CNN with over 500 manually classified images and introduce a post-processing method to reduce false positives. We find that the accuracy of CNN predictions of water pixels is around 90 % and strongly depends on the number and diversity of images used for training.</p
Threshold Laws for the Break-up of Atomic Particles into Several Charged Fragments
The processes with three or more charged particles in the final state exhibit
particular threshold behavior, as inferred by the famous Wannier law for (2e +
ion) system. We formulate a general solution which determines the threshold
behavior of the cross section for multiple fragmentation. Applications to
several systems of particular importance with three, four and five leptons
(electrons and positrons) in the field of charged core; and two pairs of
identical particles with opposite charges are presented. New threshold
exponents for these systems are predicted, while some previously suggested
threshold laws are revised.Comment: 40 pages, Revtex, scheduled for the July issue of Phys.Rev.A (1998
Hyperspherical partial wave calculation for double photoionization of the helium atom at 20 eV excess energy
Hyperspherical partial wave approach has been applied here in the study of
double photoionization of the helium atom for equal energy sharing geometry at
20 eV excess energy. Calculations have been done both in length and velocity
gauges and are found to agree with each other, with the CCC results and with
experiments and exhibit some advantages of the corresponding three particle
wave function over other wave functions in use.Comment: 11 pages, 1 figure, submitted to J. Phys B: At. Mol. Opt. Phys; v2 -
revised considerably, rewritten using ioplatex clas
Quantitative Radiographic Measurement of Dentinal Lesions
The purpose of this investigation was the comparison of the precision and accuracy of two reference ramp techniques for the quantification of radiographic density changes in teeth. Radiographs (65 kVp, 10 ma, 1 s, and intra-oral ultraspeed film) of transverse sections from extracted permanent human molars were made before and after dentinal lesions were created. Each radiograph contained the image of a tooth section and the aluminum reference ramp. Method A used the image of the ramp on both the before-and after-lesion radiographs, and method B used the image of the ramp only on the before-lesion radiograph. Three groups of lesions (0.525-mm diameter, n = 11; 0.675-mm diameter, n = 9; and the 0.525-mm holes enlarged to 0.675 mm) were measured radiographically by each technique and by direct planimetry of the lesions. Radiographic method B produced results in close agreement with the planimetric measurements. Method B differentiated (p < 0. 05) between groups that had a mean planimetric size difference of0.10 mm (equivalent to a change in density difference of 0.6%). These density change measurements are in absolute units ofmm ofaluminum that can be compared between lesions and between samples. This technique may prove useful for the quantification of changes in mineral density of caries lesions detectable in longitudinal radiographic records
Intermanifold similarities in partial photoionization cross sections of helium
Using the eigenchannel R-matrix method we calculate partial photoionization
cross sections from the ground state of the helium atom for incident photon
energies up to the N=9 manifold. The wide energy range covered by our
calculations permits a thorough investigation of general patterns in the cross
sections which were first discussed by Menzel and co-workers [Phys. Rev. A {\bf
54}, 2080 (1996)]. The existence of these patterns can easily be understood in
terms of propensity rules for autoionization. As the photon energy is increased
the regular patterns are locally interrupted by perturber states until they
fade out indicating the progressive break-down of the propensity rules and the
underlying approximate quantum numbers. We demonstrate that the destructive
influence of isolated perturbers can be compensated with an energy-dependent
quantum defect.Comment: 10 pages, 10 figures, replacement with some typos correcte
Cytochrome oxidase subunit VI of Trypanosoma brucei is imported without a cleaved presequence and is developmentally regulated at both RNA and protein levels
Mitochondrial respiration in the African trypanosome undergoes dramatic developmental stage regulation. This requires co-ordinated control of components encoded by both the nuclear genome and the kinetoplast, the unusual mitochondrial genome of these parasites. As a model for understanding the co-ordination of these genomes, we have examined the regulation and mitochondrial import of a nuclear-encoded component of the cytochrome oxidase complex, cytochrome oxidase subunit VI (COXVI). By generating transgenic trypanosomes expressing intact or mutant forms of this protein, we demonstrate that COXVI is not imported using a conventional cleaved presequence and show that sequences at the N-terminus of the protein are necessary for correct mitochondrial sorting. Analyses of endogenous and transgenic COXVI mRNA and protein expression in parasites undergoing developmental stage differentiation demonstrates a temporal order of control involving regulation in the abundance of, first, mRNA and then protein. This represents the first dissection of the regulation and import of a nuclear-encoded protein into the cytochrome oxidase complex in these organisms, which were among the earliest eukaryotes to possess a mitochondrion
Going With the Flow or Against the Grain? The Promise of Vegetation for Protecting Beaches, Dunes, and Barrier Islands From Erosion
Coastlines have traditionally been engineered to maintain structural stability and to protect property from storm‐related damage, but their ability to endure will be challenged over the next century. The use of vegetation to reduce erosion on ocean‐facing mainland and barrier island shorelines – including the sand dunes and beaches on these islands – could be part of a more flexible strategy. Although there is growing enthusiasm for using vegetation for this purpose, empirical data supporting this approach are lacking. Here, we identify the potential roles of vegetation in coastal protection, including the capture of sediment, ecological succession, and the building of islands, dunes, and beaches; the development of wave‐resistant soils by increasing effective grain size and sedimentary cohesion; the ability of aboveground architecture to attenuate waves and impede through‐flow; the capability of roots to bind sediments subjected to wave action; and the alteration of coastline resiliency by plant structures and genetic traits. We conclude that ecological and engineering practices must be combined in order to develop a sustainable, realistic, and integrated coastal protection strategy
Two electron interference in angular resolved double photoionization of Mg
The signature of the target wavefunction has been observed in the symmetrized amplitude of the resonant double photoionization of Mg. This observation is based on our experimental study of angle-resolved double photoionization of Mg at the photon energy of 55.49 eV (2p → 3d resonance) under equal energy sharing conditions
Fully differential cross sections for photo-double-ionization of D2
We report the first kinematically complete study of the four-body fragmentation of the D2 molecule following absorption of a single photon. For equal energy sharing of the two electrons and a photon energy of 75.5 eV, we observed the relaxation of one of the selection rules valid for He photo-double-ionization and a strong dependence of the electron angular distribution on the orientation of the molecular axis. This effect is reproduced by a model in which a pair of photoionization amplitudes is introduced for the light polarization parallel and perpendicular to the molecular axis
- …