249 research outputs found
An economic lot and delivery scheduling problem with the fuzzy shelf life in a flexible job shop with unrelated parallel machines
This paper considers an economic lot and delivery scheduling problem (ELDSP) in a fuzzy environment with the fuzzy shelf life for each product. This problem is formulated in a flexible job shop with unrelated parallel machines, when the planning horizon is finite and it determines lot sizing, scheduling and sequencing, simultaneously. The proposed model of this paper is based on the basic period (BP) approach. In this paper, a mixed-integer nonlinear programming (MINLP) model is presented and then it is changed into two models in the fuzzy shelf life. The main model is dependent to the multiple basic periods and it is difficult to solve the resulted proposed model for large-scale problems in reasonable amount of time; thus, an efficient heuristic method is proposed to solve the problem. The performance of the proposed model is demonstrated using some numerical examples
Evaluating high risks in large-scale projects using an extended VIKOR method under a fuzzy environment
The complexity of large-scale projects has led to numerous risks in their life cycle. This paper presents a new risk evaluation approach in order to rank the high risks in large-scale projects and improve the performance of these projects. It is based on the fuzzy set theory that is an effective tool to handle uncertainty. It is also based on an extended VIKOR method that is one of the well-known multiple criteria decision-making (MCDM) methods. The proposed decision-making approach integrates knowledge and experience acquired from professional experts, since they perform the risk identification and also the subjective judgments of the performance rating for high risks in terms of conflicting criteria, including probability, impact, quickness of reaction toward risk, event measure quantity and event capability criteria. The most notable difference of the proposed VIKOR method with its traditional version is just the use of fuzzy decision-matrix data to calculate the ranking index without the need to ask the experts. Finally, the proposed approach is illustrated with a real-case study in an Iranian power plant project, and the associated results are compared with two well-known decision-making methods under a fuzzy environment
Efficiency of a multi-objective imperialist competitive algorithm: A bi-objective location-routing-inventory problem with probabilistic routes
An integrated model considers all parameters and elements of different deficiencies in one problem. This paper presents a new integrated model of a supply chain that simultaneously considers facility location, vehicle routing and inventory control problems as well as their interactions in one problem, called location-routing-inventory (LRI) problem. This model also considers stochastic demands representing the customers’ requirement. The customers’ uncertain demand follows a normal distribution, in which each distribution center (DC) holds a certain amount of safety stock. In each DC, shortage is not permitted. Furthermore, the routes are not absolutely available all the time. Decisions are made in a multi-period planning horizon. The considered bi-objectives are to minimize the total cost and maximize the probability of delivery to customers. Stochastic availability of routes makes it similar to real-world problems. The presented model is solved by a multi-objective imperialist competitive algorithm (MOICA). Then, well-known multi-objective evolutionary algorithm, namely anon-dominated sorting genetic algorithm II (NSGA-II), is used to evaluate the performance of the proposed MOICA. Finally, the conclusion is presented
Extending the solid step fixed-charge transportation problem to consider two-stage networks and multi-item shipments
This paper develops a new mathematical model for a capacitated solid step fixed-charge transportation problem. The problem is formulated as a two-stage transportation network and considers the option of shipping multiple items from the plants to the distribution centers (DC) and afterwards from DCs to customers. In order to tackle such an NP-hard problem, we propose two meta-heuristic algorithms; namely, Simulated Annealing (SA) and Imperialist Competitive Algorithm (ICA). Contrary to the previous studies, new neighborhood strategies maintaining the feasibility of the problem are developed. Additionally, the Taguchi method is used to tune the parameters of the algorithms. In order to validate and evaluate the performances of the model and algorithms, the results of the proposed SA and ICA are compared. The computational results show that the proposed algorithms provide relatively good solutions in a reasonable amount of time. Furthermore, the related comparison reveals that the ICA generates superior solutions compared to the ones obtained by the SA algorithm
A bi-objective robust inspection planning model in a multi-stage serial production system
In this paper, a bi-objective mixed-integer linear programming (BOMILP) model for planning of an inspection process used to detect nonconforming products and malfunctioning processors in a multi-stage serial production system is presented. The model involves two inter-related decisions: 1) which quality characteristics need what kind of inspections (i.e., which-what decision) and 2) when the inspection of these characteristics should be performed (i.e., when decision). These decisions require a trade-off between the cost of manufacturing (i.e., production, inspection and scrap costs) and the customer satisfaction. Due to inevitable variations in the manufacturing systems, a global robust BOMILP (RBOMILP) is developed to tackle the inherent uncertainty of the concerned parameters (i.e., production and inspection times, errors type I and II, misadjustment and dispersion of the process). In order to optimally solve the presented RBOMILP model, a meta-heuristic algorithm, namely differential evolution (DE) algorithm, is combined with the Taguchi and Monte Carlo methods. The proposed model and solution algorithm are validated through a real industrial case from a leading automotive industry in France
- …