379,660 research outputs found

    Life Beyond the Mailbox: A Cross-Tool Perspective on Personal Information Management

    Get PDF
    Email interfaces provide poor support for the personal information management (PIM) activities that users have adopted them for. This paper reports a user study that highlights how two aspects of PIM, information management and task management, cut across a range of tools, including email. We argue that effective support for such cross-tool activities cannot be provided through a focus on one interface such as email alone. Instead, a cross-tool approach is needed in PIM-related research and design. We present a prototype aimed at improving cross-tool support for information management, and report the results from an initial evaluation

    A refined invariant subspace method and applications to evolution equations

    Full text link
    The invariant subspace method is refined to present more unity and more diversity of exact solutions to evolution equations. The key idea is to take subspaces of solutions to linear ordinary differential equations as invariant subspaces that evolution equations admit. A two-component nonlinear system of dissipative equations was analyzed to shed light on the resulting theory, and two concrete examples are given to find invariant subspaces associated with 2nd-order and 3rd-order linear ordinary differential equations and their corresponding exact solutions with generalized separated variables.Comment: 16 page

    Davisite, CaScAlSiO_6, a new pyroxene from the Allende meteorite

    Get PDF
    Davisite, ideally CaScAlSiO_6, is a new member of the Ca clinopyroxene group, where Sc^(3+) is dominant in the M1 site. It occurs as micro-sized crystals along with perovskite and spinel in an ultra-refractory inclusion from the Allende meteorite. The mean chemical composition determined by electron microprobe analysis is (wt%) SiO_2 26.24, CaO 23.55, Al_2O_3 21.05, Sc_2O_3 14.70, TiO_2 (total) 8.66, MgO 2.82, ZrO_2 2.00, Y_2O_3 0.56, V_2O_3 0.55, FeO 0.30, Dy_2O_3 0.27, Gd_2O_3 0.13, Er_2O_3 0.08, sum 100.91. Its empirical formula calculated on the basis of 6 O atoms is Ca_(0.99)(Sc_(0.50)Ti^(3+)0.16^(Mg)0.16Ti^(4+)0.10 Zr_(0.04)V^(3+)_(0.02)Fe^(2+)_(0.01)Y_(0.01))_(∑1.00)(Si_(1.03)Al_(0.97))_(∑2).00O_6. Davisite is monoclinic, C2/c; a = 9.884 Å, b = 8.988 Å, c = 5.446 Å, β =105.86°, V = 465.39 Å^3, and Z = 4. Its electron back-scattered diffraction pattern is an excellent match to that of synthetic CaScAlSiO6 with the C2/c structure. The strongest calculated X-ray powder diffraction lines are [d spacing in Å (I) (hkl)]: 3.039 (100) (221), 2.989 (31) (310), 2.943 (18) (311), 2.619 (40) (002), 2.600 (26) (131), 2.564 (47) (221), 2.159 (18) (331), 2.137 (15) (421), 1.676 (20) (223), and 1.444 (18) (531). The name is for Andrew M. Davis, a cosmochemist at the University of Chicago, Illinois
    corecore