148 research outputs found

    Temperature Dependence of the Magnetic Penetration Depth in the Vortex State of the Pyrochlore Superconductor, Cd2Re2O7

    Get PDF
    We report transverse field and zero field muon spin rotation studies of the superconducting rhenium oxide pyrochlore, Cd2Re2O7. Transverse field measurements (H=0.007 T) show line broadening below Tc, which is characteristic of a vortex state, demonstrating conclusively the type-II nature of this superconductor. The penetration depth is seen to level off below about 400 mK (T/Tc~0.4), with a rather large value of lambda (T=0)~7500A. The temperature independent behavior below ~ 400 mK is consistent with a nodeless superconducting energy gap. Zero-field measurements indicate no static magnetic fields developing below the transition temperature.Comment: 4 pages, 4 figures, REVTEX 4, submitted to PR

    Spin-glass state of vortices in YBa2Cu3Oy and La2-xSrxCuO4 below the metal-to-insulator crossover

    Full text link
    Highly disordered magnetism confined to individual weakly interacting vortices is detected by muon spin rotation in two different families of high-transition-temperature superconductors, but only in samples on the low-doping side of the low-temperature normal state metal-to-insulator crossover (MIC). The results support an extended quantum phase transition (QPT) theory of competing magnetic and superconducting orders that incorporates the coupling between CuO2 planes. Contrary to what has been inferred from previous experiments, the static magnetism that coexists with superconductivity near the field-induced QPT is not ordered. Our findings unravel the mystery of the MIC and establish that the normal state of high-temperature superconductors is ubiquitously governed by a magnetic quantum critical point in the superconducting phase.Comment: 9 pages, 9 figure

    Expansion of the Vortex Cores in YBa2Cu3O6.95 at Low Magnetic Fields

    Full text link
    Muon spin rotation spectroscopy has been used to measure the effective size of the vortex cores in optimally doped YBa2Cu3O6.95 as a function of temperature and magnetic field deep in the superconducting state. While the core size at H=2T is close to 20 angstroms and consistent with that measured by STM at 6T, we find a striking increase in the core size at lower magnetic fields, where it approaches an extraordinarily large value of about 100 angstroms. This suggests that the average value of the superconducting coherence length in cuprate superconductors may be larger than previously thought at low magnetic fields.Comment: 9 pages, 4 figures, 1 text fil

    Electronic structure of the muonium center as a shallow donor in ZnO

    Full text link
    The electronic structure and the location of muonium centers (Mu) in single-crystalline ZnO were determined for the first time. Two species of Mu centers with extremely small hyperfine parameters have been observed below 40 K. Both Mu centers have an axial-symmetric hyperfine structure along with a [0001] axis, indicating that they are located at the AB_{O,//} and BC_{//} sites. It is inferred from their small ionization energy (~6 meV and 50 meV) and hyperfine parameters (~10^{-4} times the vacuum value) that these centers behave as shallow donors, strongly suggesting that hydrogen is one of the primary origins of n type conductivity in as-grown ZnO.Comment: 4 pages, 4 figures, submitted to PR

    Hyperfine Fields in an Ag/Fe Multilayer Film Investigated with 8Li beta-Detected Nuclear Magnetic Resonance

    Full text link
    Low energy β\beta-detected nuclear magnetic resonance (β\beta-NMR) was used to investigate the spatial dependence of the hyperfine magnetic fields induced by Fe in the nonmagnetic Ag of an Au(40 \AA)/Ag(200 \AA)/Fe(140 \AA) (001) magnetic multilayer (MML) grown on GaAs. The resonance lineshape in the Ag layer shows dramatic broadening compared to intrinsic Ag. This broadening is attributed to large induced magnetic fields in this layer by the magnetic Fe layer. We find that the induced hyperfine field in the Ag follows a power law decay away from the Ag/Fe interface with power −1.93(8)-1.93(8), and a field extrapolated to 0.23(5)0.23(5) T at the interface.Comment: 5 pages, 4 figure. To be published in Phys. Rev.
    • …
    corecore