6 research outputs found

    Calculation of gluon and four-quark condensates from the operator expansion

    Full text link
    The magnitudes of gluon and four-quark condensates are found from the analysis of vector mesons consisting of light quarks (the families of ρ\rho and ω\omega mesons) in the 3 loops approximation. The QCD model with infinite number of vector mesons is used to describe the function R(s)R(s). This model describes well the experimental function R(s)R(s). Polarization operators calculated with this model coincide with the Wilson operator expansion at large Q2Q^2. The improved perturbative theory, such that the polarization operators have correct analytical properties, is used. The result is <0(αs/π)G20>=0.062±0.019GeV4<0 | (\alpha_s/\pi) G^2 | 0 > = 0.062 \pm 0.019 GeV^4. The electronic widths of ρ(1450)\rho(1450) and ω(1420)\omega(1420) are calculated.Comment: 18 pages, latex, changed content slightl

    On the distances between entangled pseudoscalar mesons states

    Full text link
    Entangled states of pseudoscalar mesons represent a very interesting tool for studying foundations of quantum mechanics, e.g. for testing Bell inequalities. Recently, they also emerged as a test bench for quantum information protocols. On the other hand, from a quantum information point of view, the characterization of the distance between two quantum states is a topic of the utmost importance. In this letter, with the purpose of providing a useful tool for further investigations, we address the problem of which distance allows a better discrimination between density matrices appearing in pseudoscalar phenomenology

    Charges and the boundary in Chern-Simons gravity

    No full text
    corecore