22 research outputs found

    Circadian rhythm dysfunction in glaucoma: A hypothesis

    Get PDF
    The absence of circadian zeitgebers in the social environment causes circadian misalignment, which is often associated with sleep disturbances. Circadian misalignment, defined as a mismatch between the sleep-wake cycle and the timing of the circadian system, can occur either because of inadequate exposure to the light-dark cycle, the most important synchronizer of the circadian system, or reduction in light transmission resulting from ophthalmic diseases (e.g., senile miosis, cataract, diabetic retinopathy, macular degeneration, retinitis pigmentosa, and glaucoma). We propose that glaucoma may be the primary ocular disease that directly compromises photic input to the circadian time-keeping system because of inherent ganglion cell death. Glaucomatous damage to the ganglion cell layer might be particularly harmful to melanopsin. According to histologic and circadian data, a subset of intrinsically photoresponsive retinal ganglion cells, expressing melanopsin and cryptochromes, entrain the endogenous circadian system via transduction of photic input to the thalamus, projecting either to the suprachiasmatic nucleus or the lateral geniculate nucleus. Glaucoma provides a unique opportunity to explore whether in fact light transmission to the circadian system is compromised as a result of ganglion cell loss

    Daily illumination exposure and melatonin: influence of ophthalmic dysfunction and sleep duration

    Get PDF
    BACKGROUND: Ocular pathology lessens light's efficacy to maintain optimal circadian entrainment. We examined whether ophthalmic dysfunction explains unique variance in melatonin excretion of older adults over and above the variance explained by daily illumination, medical, and sociodemographic factors. We also examined whether ophthalmic dysfunction influences relationships between ambient illumination and melatonin. METHODS: Thirty older adults (mean age = 69 years; Blacks = 42% and Whites = 58%) of both genders participated in the study. Demographic and health data were collected at baseline. Participants underwent eye exams at SUNY Downstate Medical Center, wore an actigraph to monitor illumination and sleep, and collected urine specimens to estimate aMT6s concentrations. RESULTS: Hierarchical regression analysis showed that illumination factors explained 29% of the variance in aMT6s mesor. The proportion of variance explained by ophthalmic factors, sleep duration, and race was 10%, 2%, and 2%, respectively. Illumination factors explained 19% of the variance in aMT6s acrophase. The proportion of variance explained by ophthalmic factors, sleep duration, and race was 11%; 17%; and 2%, respectively. Controlling for sleep duration and race reduced the correlations between illumination and melatonin, whereas controlling for ophthalmic factors did not. CONCLUSION: Ophthalmic exams showed that elevated intraocular pressure and large cup-to-disk ratios were independently associated with earlier melatonin timing. Lower illumination exposure also had independent associations with earlier melatonin timing. Conceivably, ophthalmic and illumination factors might have an additive effect on the timing of melatonin excretion, which in turn might predispose individuals to experience early morning awakenings
    corecore