2,165 research outputs found

    XMM-Newton, Chandra, and CGPS observations of the Supernova Remnants G85.4+0.7 and G85.9-0.6

    Full text link
    We present an XMM-Newton detection of two low radio surface brightness SNRs, G85.4+0.7 and G85.9-0.6, discovered with the Canadian Galactic Plane Survey (CGPS). High-resolution XMM-Newton images revealing the morphology of the diffuse emission, as well as discrete point sources, are presented and correlated with radio and Chandra images. The new data also permit a spectroscopic analysis of the diffuse emission regions, and a spectroscopic and timing analysis of the point sources. Distances have been determined from HI and CO data to be 3.5 +/- 1.0 kpc for SNR G85.4+0.7 and 4.8 +/- 1.6 kpc for SNR G85.9-0.6. The SNR G85.4+0.7 is found to have a temperature of ~12-13 MK and a 0.5-2.5 keV luminosity of ~1-4 x 10^33 D(3.5)^2 erg/s (where D(3.5) is the distance in units of 3.5 kpc), with an electron density n_e of ~0.07-0.16(fD(3.5))^-1/2 cm^-3 (where f is the volume filling factor), and a shock age of ~9-49(fD(3.5))^1/2 kyr. The SNR G85.9-0.6 is found to have a temperature of ~15-19 MK and a 0.5-2.5 keV luminosity of ~1-4 x 10^34 D(4.8)^2 erg/s (where D(4.8) is the distance in units of 4.8 kpc), with an electron density n_e of ~0.04-0.10(fD(4.8))^-1/2 cm^-3 and a shock age of ~12-42(fD(4.8))^1/2 kyr. Based on the data presented here, none of the point sources appears to be the neutron star associated with either SNR.Comment: 30 pages using emulateapj, 16 figures with quality reduced for astro-ph only. The original version with high-resolution figures can be downloaded from: http://www.physics.umanitoba.ca/~samar/astro-ph/G85s-ms09102007.pdf To appear in ApJ (Jan 20 2008 issue, v673, n1

    External voltage sources and Tunneling in quantum wires

    Full text link
    We (re) consider in this paper the problem of tunneling through an impurity in a quantum wire with arbitrary Luttinger interaction parameter. By combining the integrable approach developed in the case of Quantum Hall edge states with the introduction of radiative boundary conditions to describe the adiabatic coupling to reservoirs, we are able to obtain the exact equilibrium and non equilibrium current. One of the most striking features observed is the appearance of negative differential conductances out of equilibrium in the strongly interacting regime g <=.2. In spite of the various charging effects, a remarkable form of duality is still observed. New results on the computation of transport properties in integrable impurity problems are gathered in appendices. In particular, we prove that the TBA results satisfy a remarkable relation, originally derived using the Keldysh formalism, between the order T^2 correction to the current out of equilibrium and the second derivative of this current at T=0 with respect to the voltage.Comment: 16 pages, 7 figure

    Nonequilibrium electron transport using the density matrix renormalization group

    Full text link
    We extended the Density Matrix Renormalization Group method to study the real time dynamics of interacting one dimensional spinless Fermi systems by applying the full time evolution operator to an initial state. As an example we describe the propagation of a density excitation in an interacting clean system and the transport through an interacting nano structure

    Transport properties of single channel quantum wires with an impurity: Influence of finite length and temperature on average current and noise

    Full text link
    The inhomogeneous Tomonaga Luttinger liquid model describing an interacting quantum wire adiabatically coupled to non-interacting leads is analyzed in the presence of a weak impurity within the wire. Due to strong electronic correlations in the wire, the effects of impurity backscattering, finite bias, finite temperature, and finite length lead to characteristic non-monotonic parameter dependencies of the average current. We discuss oscillations of the non-linear current voltage characteristics that arise due to reflections of plasmon modes at the impurity and quasi Andreev reflections at the contacts, and show how these oscillations are washed out by decoherence at finite temperature. Furthermore, the finite frequency current noise is investigated in detail. We find that the effective charge extracted in the shot noise regime in the weak backscattering limit decisively depends on the noise frequency ω\omega relative to vF/gLv_F/gL, where vFv_F is the Fermi velocity, gg the Tomonaga Luttinger interaction parameter, and LL the length of the wire. The interplay of finite bias, finite temperature, and finite length yields rich structure in the noise spectrum which crucially depends on the electron-electron interaction. In particular, the excess noise, defined as the change of the noise due to the applied voltage, can become negative and is non-vanishing even for noise frequencies larger than the applied voltage, which are signatures of correlation effects.Comment: 28 pages, 19 figures, published version with minor change
    corecore