1,278 research outputs found

    Exactly solvable time-dependent models of two interacting two-level systems

    Full text link
    Two coupled two-level systems placed under external time-dependent magnetic fields are modeled by a general Hamiltonian endowed with a symmetry that enables us to reduce the total dynamics into two independent two-dimensional sub-dynamics. Each of the sub-dynamics is shown to be brought into an exactly solvable form by appropriately engineering the magnetic fields and thus we obtain an exact time evolution of the compound system. Several physically relevant and interesting quantities are evaluated exactly to disclose intriguing phenomena in such a system.Comment: 15 pages, 13 figure

    Time evolution of a pair of distinguishable interacting spins subjected to controllable and noisy magnetic fields

    Full text link
    The quantum dynamics of a J^2=(j^1+j^2)2\hat{\mathbf{J}}^2=(\hat{\mathbf{j}}_1+\hat{\mathbf{j}}_2)^2-conserving Hamiltonian model describing two coupled spins j^1\hat{\mathbf{j}}_1 and j^2\hat{\mathbf{j}}_2 under controllable and fluctuating time-dependent magnetic fields is investigated. Each eigenspace of J^2\hat{\mathbf{J}}^2 is dynamically invariant and the Hamiltonian of the total system restricted to any one of such (j1+j2)j1j2+1(j_1+j_2)-|j_1-j_2|+1 eigenspaces, possesses the SU(2) structure of the Hamiltonian of a single fictitious spin acted upon by the total magnetic field. We show that such a reducibility holds regardless of the time dependence of the externally applied field as well as of the statistical properties of the noise, here represented as a classical fluctuating magnetic field. The time evolution of the joint transition probabilities of the two spins j^1\hat{\mathbf{j}}_1 and j^2\hat{\mathbf{j}}_2 between two prefixed factorized states is examined, bringing to light peculiar dynamical properties of the system under scrutiny. When the noise-induced non-unitary dynamics of the two coupled spins is properly taken into account, analytical expressions for the joint Landau-Zener transition probabilities are reported. The possibility of extending the applicability of our results to other time-dependent spin models is pointed out.Comment: 11 pages, 5 figure

    An example of interplay between Physics and Mathematics: Exact resolution of a new class of Riccati Equations

    Full text link
    A novel recipe for exactly solving in finite terms a class of special differential Riccati equations is reported. Our procedure is entirely based on a successful resolution strategy quite recently applied to quantum dynamical time-dependent SU(2) problems. The general integral of exemplary differential Riccati equations, not previously considered in the specialized literature, is explicitly determined to illustrate both mathematical usefulness and easiness of applicability of our proposed treatment. The possibility of exploiting the general integral of a given differential Riccati equation to solve an SU(2) quantum dynamical problem, is succinctly pointed out.Comment: 10 page

    A Spectrophotometric Method to Determine the Inclination of Class I Objects

    Full text link
    A new method which enables us to estimate the inclination of Class I young stellar objects is proposed. Since Class I objects are not spherically symmetric, it is likely that the observed feature is sensitive to the inclination of the system. Thus, we construct a protostar model by carefully treating two-dimensional (2D) radiative transfer and radiative equilibrium. We show from the present 2D numerical simulations that the emergent luminosity L_SED,which is the frequency integration of spectral energy distribution (SED), depends strongly on the inclination of the system i, whereas the peak flux is insensitive to i. Based on this result, we introduce a novel indicator f_L, which is the ratio of L_SED to the peak flux, as a good measure for the inclination. By using f_L, we can determine the inclination regardless of the other physical parameters. The inclination would be determined by f_L within the accuracy of +- 5 degree, if the opening angle of bipolar outflows is specified by any other procedure. Since this spectrophotometric method is easier than a geometrical method or a full SED fitting method, this method could be a powerful tool to investigate the feature of protostars statistically with observational data which will be provided by future missions, such as SIRTF, ASTRO-F, and ALMA.Comment: 14 pages, 9 figures, accepted by Ap

    Purification through Zeno-like Measurements

    Full text link
    A series of frequent measurements on a quantum system (Zeno-like measurements) is shown to result in the ``purification'' of another quantum system in interaction with the former. Even though the measurements are performed on the former system, their effect drives the latter into a pure state, irrespectively of its initial (mixed) state, provided certain conditions are satisfied.Comment: REVTeX4, 4 pages, 1 figure; to be published in Phys. Rev. Lett. (2003

    Lymphoma and hypercalcemia in a pediatric orthotopic liver transplant patient

    Get PDF
    We present a case report of a pediatric orthotopic liver transplant recipient who developed lymphoma with hypercalcemia on cyclosporine and prednisone immunosuppression. This is the first reported posttransplant lymphoproliferative disorder complicated by hypercalcemia, with a finding of an elevated 1,25 dihydroxyl vitamin D state, suggesting that it has a role in the pathophysiology of this B cell lymphoma hypercalcemia. The clinical course and management of this disorder with a 31-month follow-up are described. © 1989 by Williams & Wilkins

    Lateral Effects in Fermion Antibunching

    Full text link
    Lateral effects are analyzed in the antibunching of a beam of free non-interacting fermions. The emission of particles from a source is dynamically described in a 3D full quantum field-theoretical framework. The size of the source and the detectors, as well as the temperature of the source are taken into account and the behavior of the visibility is scrutinized as a function of these parameters.Comment: 22 pages, 4 figure

    Entanglement Generation by Qubit Scattering in Three Dimensions

    Full text link
    A qubit (a spin-1/2 particle) prepared in the up state is scattered by local spin-flipping potentials produced by the two target qubits (two fixed spins), both prepared in the down state, to generate an entangled state in the latter when the former is found in the down state after scattering. The scattering process is analyzed in three dimensions, both to lowest order and in full order in perturbation, with an appropriate renormalization for the latter. The entanglement is evaluated in terms of the concurrence as a function of the incident and scattering angles, the size of the incident wave packet, and the detector resolution, to clarify the key elements for obtaining an entanglement with high quality. The characteristics of the results are also discussed in the context of (in)distinguishability of alternative paths for a quantum particle.Comment: 21 pages, 19 figures, the final versio

    Decoherence and the Quantum Zeno Effect

    Full text link
    The experiment of Etano et al which demonstrated the quantum Zeno effect (QZE) in an optical experiment was explained by Frerichs and Schenzle without invoking the wave function collapse. In this report it is proposed that the collapse does occur, and it can be explained by the `environment induced decoherence' theory. The environment here consists of the completely quantized field vacuum modes. The spontaneous emission life time of the atom sets a fundamental limit on the requirement of `continuous measurements' for QZE. This limit turns out to be related to the time-energy uncertainty relation discussed by Ghirardi et al.Comment: Based on a poster presented at the "Workshop on Advanced Laser Spectroscopy", I.I.T. Kanpur, India, 25-28 February 1995. RevTeX, one page, two uunecoded post-script figures appended
    corecore