795 research outputs found
The Chemical Evolution of Helium in Globular Clusters: Implications for the Self-Pollution Scenario
We investigate the suggestion that there are stellar populations in some
globular clusters with enhanced helium (Y from 0.28 to 0.40) compared to the
primordial value. We assume that a previous generation of massive Asymptotic
Giant Branch (AGB) stars have polluted the cluster. Two independent sets of AGB
yields are used to follow the evolution of helium and CNO using a Salpeter
initial mass function (IMF) and two top-heavy IMFs. In no case are we able to
produce the postulated large Y ~ 0.35 without violating the observational
constraint that the CNO content is nearly constant.Comment: accepted for publication in Ap
MONTAGE: AGB nucleosynthesis with full s-process calculations
We present MONTAGE, a post-processing nucleosynthesis code that combines a
traditional network for isotopes lighter than calcium with a rapid algorithm
for calculating the s-process nucleosynthesis of the heavier isotopes. The
separation of those parts of the network where only neutron-capture and
beta-decay reactions are significant provides a substantial advantage in
computational efficiency. We present the yields for a complete set of s-process
isotopes for a 3 Mo, Z = 0.02 stellar model, as a demonstration of the utility
of the approach. Future work will include a large grid of models suitable for
use in calculations of Galactic chemical evolution.Comment: 9 pages, 4 figures. Accepted by PAS
Partial mixing and the formation of 13C pockets in AGB stars: effects on the s-process elements
The production of the elements heavier than iron via slow neutron captures
(the s process) is a main feature of the contribution of asymptotic giant
branch (AGB) stars of low mass (< 5 Msun) to the chemistry of the cosmos.
However, our understanding of the main neutron source, the 13C(alpha,n)16O
reaction, is still incomplete. It is commonly assumed that in AGB stars mixing
beyond convective borders drives the formation of 13C pockets. However, there
is no agreement on the nature of such mixing and free parameters are present.
By means of a parametric model we investigate the impact of different mixing
functions on the final s-process abundances in low-mass AGB models. Typically,
changing the shape of the mixing function or the mass extent of the region
affected by the mixing produce the same results. Variations in the relative
abundance distribution of the three s-process peaks (Sr, Ba, and Pb) are
generally within +/-0.2 dex, similar to the observational error bars. We
conclude that other stellar uncertainties - the effect of rotation and of
overshoot into the C-O core - play a more important role than the details of
the mixing function. The exception is at low metallicity, where the Pb
abundance is significantly affected. In relation to the composition observed in
stardust SiC grains from AGB stars, the models are relatively close to the data
only when assuming the most extreme variation in the mixing profile.Comment: 17 pages, 8 figures, 6 tables, accepted for publications on Monthly
Notices of the Royal Astronomical Societ
A Density Independent Formulation of Smoothed Particle Hydrodynamics
The standard formulation of the smoothed particle hydrodynamics (SPH) assumes
that the local density distribution is differentiable. This assumption is used
to derive the spatial derivatives of other quantities. However, this assumption
breaks down at the contact discontinuity. At the contact discontinuity, the
density of the low-density side is overestimated while that of the high-density
side is underestimated. As a result, the pressure of the low (high) density
side is over (under) estimated. Thus, unphysical repulsive force appears at the
contact discontinuity, resulting in the effective surface tension. This tension
suppresses fluid instabilities. In this paper, we present a new formulation of
SPH, which does not require the differentiability of density. Instead of the
mass density, we adopt the internal energy density (pressure), and its
arbitrary function, which are smoothed quantities at the contact discontinuity,
as the volume element used for the kernel integration. We call this new
formulation density independent SPH (DISPH). It handles the contact
discontinuity without numerical problems. The results of standard tests such as
the shock tube, Kelvin-Helmholtz and Rayleigh-Taylor instabilities, point like
explosion, and blob tests are all very favorable to DISPH. We conclude that
DISPH solved most of known difficulties of the standard SPH, without
introducing additional numerical diffusion or breaking the exact force symmetry
or energy conservation. Our new SPH includes the formulation proposed by
Ritchie & Thomas (2001) as a special case. Our formulation can be extended to
handle a non-ideal gas easily.Comment: 24 pages, 21 figures. Movies and high resolution figures are
available at http://v1.jmlab.jp/~saitoh/sph/index.htm
Magnetohydrodynamics of Cloud Collisions in a Multi-phase Interstellar Medium
We extend previous studies of the physics of interstellar cloud collisions by
beginning investigation of the role of magnetic fields through 2D
magnetohydrodynamic (MHD) numerical simulations. We study head-on collisions
between equal mass, mildly supersonic diffuse clouds. We include a moderate
magnetic field and two limiting field geometries, with the field lines parallel
(aligned) and perpendicular (transverse) to the colliding cloud motion. We
explore both adiabatic and radiative cases, as well as symmetric and asymmetric
ones. We also compute collisions between clouds evolved through prior motion in
the intercloud medium and compare with unevolved cases.
We find that: In the (i) aligned case, adiabatic collisions, like their HD
counterparts, are very disruptive, independent of the cloud symmetry. However,
when radiative processes are taken into account, partial coalescence takes
place even in the asymmetric case, unlike the HD calculations. In the (ii)
transverse case, collisions between initially adjacent unevolved clouds are
almost unaffected by magnetic fields. However, the interaction with the
magnetized intercloud gas during the pre-collision evolution produces a region
of very high magnetic energy in front of the cloud. In collisions between
evolved clouds with transverse field geometry, this region acts like a
``bumper'', preventing direct contact between the clouds, and eventually
reverses their motion. The ``elasticity'', defined as the ratio of the final to
the initial kinetic energy of each cloud, is about 0.5-0.6 in the cases we
considered. This behavior is found both in adiabatic and radiative cases.Comment: 40 pages in AAS LaTeX v4.0, 13 figures (in degraded jpeg format).
Full resolution images as well as mpeg animations are available at
http://www.msi.umn.edu:80/Projects/twj/mhd-cc/ . Accepted for publication in
The Astrophysical Journa
Rubidium and lead abundances in giant stars of the globular clusters M 13 and NGC 6752
We present measurements of the neutron-capture elements Rb and Pb in five
giant stars of the globular cluster NGC 6752 and Pb measurements in four giants
of the globular cluster M 13. The abundances were derived by comparing
synthetic spectra with high resolution, high signal-to-noise ratio spectra
obtained using HDS on the Subaru telescope and MIKE on the Magellan telescope.
The program stars span the range of the O-Al abundance variation. In NGC 6752,
the mean abundances are [Rb/Fe] = -0.17 +/- 0.06 (sigma = 0.14), [Rb/Zr] =
-0.12 +/- 0.06 (sigma = 0.13), and [Pb/Fe] = -0.17 +/- 0.04 (sigma = 0.08). In
M 13 the mean abundance is [Pb/Fe] = -0.28 +/- 0.03 (sigma = 0.06). Within the
measurement uncertainties, we find no evidence for a star-to-star variation for
either Rb or Pb within these clusters. None of the abundance ratios [Rb/Fe],
[Rb/Zr], or [Pb/Fe] are correlated with the Al abundance. NGC 6752 may have
slightly lower abundances of [Rb/Fe] and [Rb/Zr] compared to the small sample
of field stars at the same metallicity. For M 13 and NGC 6752 the Pb abundances
are in accord with predictions from a Galactic chemical evolution model. If
metal-poor intermediate-mass asymptotic giant branch stars did produce the
globular cluster abundance anomalies, then such stars do not synthesize
significant quantities of Rb or Pb. Alternatively, if such stars do synthesize
large amounts of Rb or Pb, then they are not responsible for the abundance
anomalies seen in globular clusters.Comment: Accepted for publication in Ap
Lithium abundances in globular cluster giants: NGC 1904, NGC 2808, and NGC 362
The presence of multiple populations in globular clusters has been well
established thanks to high-resolution spectroscopy. It is widely accepted that
distinct populations are a consequence of different stellar generations:
intra-cluster pollution episodes are required to produce the peculiar chemistry
observed in almost all clusters. Unfortunately, the progenitors responsible
have left an ambiguous signature and their nature remains unresolved. To
constrain the candidate polluters, we have measured lithium and aluminium
abundances in more than 180 giants across three systems: NGC~1904, NGC~2808,
and NGC~362. The present investigation along with our previous analysis of M12
and M5 affords us the largest database of simultaneous determinations of Li and
Al abundances. Our results indicate that Li production has occurred in each of
the three clusters. In NGC~362 we detected an M12-like behaviour, with first
and second-generation stars sharing very similar Li abundances favouring a
progenitor that is able to produce Li, such as AGB stars. Multiple progenitor
types are possible in NGC~1904 and NGC~2808, as they possess both an
intermediate population comparable in lithium to the first generation stars and
also an extreme population, that is enriched in Al but depleted in Li. A simple
dilution model fails in reproducing this complex pattern. Finally, the internal
Li variation seems to suggest that the production efficiency of this element is
a function of the cluster's mass and metallicity - low-mass or relatively
metal-rich clusters are more adept at producing Li.Comment: Accepted for publication in MNRAS. 10 pages, 8 figure
- âŠ