145,337 research outputs found
Melt conditioned direct chill casting (MC-DC) of wrought Al-alloys
Melt Conditioned Direct Chill (MC-DC) casting is a new development for producing high-quality billets and slabs. In the MC-DC process, liquid metal is continuously fed into a MCAST (melt conditioning by advanced shear technology) machine, where the liquid metal is subjected to high shear rate and high degree of turbulence provided by a twin screw mechanism at temperatures either above or below the alloy liquidus, and the conditioned liquid metal is then fed continuously into a Direct Chill (DC) caster to produce billets or slabs. The MC-DC process is applicable to both Aland Mg-alloys. In this paper we present our experimental investigations of the effects of processing parameters on the microstructural and compositional uniformity of 5xxx and 7xxx series Al-alloys. It has been confirmed by our experiments that the MC-DC process can produce billets and slabs with fine and uniform microstructure, uniform chemical compositions and much reduced cast defects, such as porosity and cracks
Morphology, structure, optical, and electrical properties of AgSbO₃
The morphology of defect pyrochlore-type, AgSbO₃ microparticle/nanoparticles obtained via solid state reaction evolve from irregular to Fullerene-like polyhedra before finally decomposing into metal-organic framework-5 like particles with increase in sintering temperature. The defect pyrochlore-type AgSbO₃ particles are slightly Ag deficient while the valence of the antimony ion is shown to be +5 giving rise to a probable stoichiometry of Ag₁ˍₓ SbVO₃ˍₓ/₂, with x∼0.01–0.04. A highly structured diffuse intensity distribution observed via electron diffraction is interpreted in terms of correlated displacements of one-dimensional (1D) silver ion chains along ⟨110⟩ directions. A redshifting in the absorption edges in UV-visible absorption spectra is observed for samples prepared at sintering temperatures higher than 1000 °C and attributed to the surface plasma resonance effect associated with small amounts of excess metallic Ag on the Ag₁ˍₓ SbVO₃ˍₓ/₂ particles. An electrical properties investigation of the silver antimonate samples via dielectric, conductivity, and electric modulus spectroscopy shows a prominent dielectric relaxation associated with grain boundaries. The silver ion conductivity is associated with correlated displacements of 1D silver ion chains along ⟨110⟩ directions.Z.G.Y., Y.L., and R.L.W. acknowledge financial support
from the Australian Research Council ARC in the form of
ARC Discovery Grants
Diquark effects in light baryon correlators from lattice QCD
We study the role of diquarks in light baryons through point to point baryon
correlators. We contrast results from quenched simulations with ones with two
flavors of dynamical overlap fermions. The scalar, pseudoscalar and axial
vector diquarks are combined with light quarks to form color singlets. The
quenched simulation shows large zero mode effects in correlators containing the
scalar and pseudoscalar diquark. The two scalar diquarks created by gamma_5 and
gamma_0gamma_5 lead to different behavior in baryon correlators, showing that
the interaction of diquarks with the third light quark matters: we do not see
an isolated diquark. In our quark mass range, the scalar diquark created by
gamma_5 seems to play a greater role than the others.Comment: 12 pages, 11 figure
Learning a Mixture of Deep Networks for Single Image Super-Resolution
Single image super-resolution (SR) is an ill-posed problem which aims to
recover high-resolution (HR) images from their low-resolution (LR)
observations. The crux of this problem lies in learning the complex mapping
between low-resolution patches and the corresponding high-resolution patches.
Prior arts have used either a mixture of simple regression models or a single
non-linear neural network for this propose. This paper proposes the method of
learning a mixture of SR inference modules in a unified framework to tackle
this problem. Specifically, a number of SR inference modules specialized in
different image local patterns are first independently applied on the LR image
to obtain various HR estimates, and the resultant HR estimates are adaptively
aggregated to form the final HR image. By selecting neural networks as the SR
inference module, the whole procedure can be incorporated into a unified
network and be optimized jointly. Extensive experiments are conducted to
investigate the relation between restoration performance and different network
architectures. Compared with other current image SR approaches, our proposed
method achieves state-of-the-arts restoration results on a wide range of images
consistently while allowing more flexible design choices. The source codes are
available in http://www.ifp.illinois.edu/~dingliu2/accv2016
Heavy Pentaquarks
We construct the spin-flavor wave functions of the possible heavy pentaquarks
containing an anti-charm or anti-bottom quark using various clustered quark
models. Then we estimate the masses and magnetic moments of the or heavy pentaquarks. We emphasize the difference in the
predictions of these models. Future experimental searches at BESIII, CLEOc,
BELLE, and LEP may find these interesting states
Spin squeezing: transforming one-axis-twisting into two-axis-twisting
Squeezed spin states possess unique quantum correlation or entanglement that
are of significant promises for advancing quantum information processing and
quantum metrology. In recent back to back publications [C. Gross \textit{et al,
Nature} \textbf{464}, 1165 (2010) and Max F. Riedel \textit{et al, Nature}
\textbf{464}, 1170 (2010)], reduced spin fluctuations are observed leading to
spin squeezing at -8.2dB and -2.5dB respectively in two-component atomic
condensates exhibiting one-axis-twisting interactions (OAT). The noise
reduction limit for the OAT interaction scales as , which
for a condensate with atoms, is about 100 times below standard
quantum limit. We present a scheme using repeated Rabi pulses capable of
transforming the OAT spin squeezing into the two-axis-twisting type, leading to
Heisenberg limited noise reduction , or an extra 10-fold
improvement for .Comment: 4 pages, 3 figure
- …