37 research outputs found
Sepsis is associated with mitochondrial DNA damage and a reduced mitochondrial mass in the kidney of patients with sepsis-AKI
BACKGROUND: Sepsis is a life-threatening condition accompanied by organ dysfunction subsequent to a dysregulated host response to infection. Up to 60% of patients with sepsis develop acute kidney injury (AKI), which is associated with a poor clinical outcome. The pathophysiology of sepsis-associated AKI (sepsis-AKI) remains incompletely understood, but mitochondria have emerged as key players in the pathogenesis. Therefore, our aim was to identify mitochondrial damage in patients with sepsis-AKI. METHODS: We conducted a clinical laboratory study using "warm" postmortem biopsies from sepsis-associated AKI patients from a university teaching hospital. Biopsies were taken from adult patients (n = 14) who died of sepsis with AKI at the intensive care unit (ICU) and control patients (n = 12) undergoing tumor nephrectomy. To define the mechanisms of the mitochondrial contribution to the pathogenesis of sepsis-AKI, we explored mRNA and DNA expression of mitochondrial quality mechanism pathways, DNA oxidation and mitochondrial DNA (mtDNA) integrity in renal biopsies from sepsis-AKI patients and control subjects. Next, we induced human umbilical vein endothelial cells (HUVECs) with lipopolysaccharide (LPS) for 48 h to mimic sepsis and validate our results in vitro. RESULTS: Compared to control subjects, sepsis-AKI patients had upregulated mRNA expression of oxidative damage markers, excess mitochondrial DNA damage and lower mitochondrial mass. Sepsis-AKI patients had lower mRNA expression of mitochondrial quality markers TFAM, PINK1 and PARKIN, but not of MFN2 and DRP1. Oxidative DNA damage was present in the cytosol of tubular epithelial cells in the kidney of sepsis-AKI patients, whereas it was almost absent in biopsies from control subjects. Oxidative DNA damage co-localized with both the nuclei and mitochondria. Accordingly, HUVECs induced with LPS for 48 h showed an increased mnSOD expression, a decreased TFAM expression and higher mtDNA damage levels. CONCLUSION: Sepsis-AKI induces mitochondrial DNA damage in the human kidney, without upregulation of mitochondrial quality control mechanisms, which likely resulted in a reduction in mitochondrial mass
GYY4137-Derived Hydrogen Sulfide Donates Electrons to the Mitochondrial Electron Transport Chain via Sulfide:Quinone Oxidoreductase in Endothelial Cells
The protective effects of hydrogen sulphide (H2S) to limit oxidative injury and preserve mitochondrial function during sepsis, ischemia/reperfusion, and neurodegenerative diseases have prompted the development of soluble H2S-releasing compounds such as GYY4137. Yet, the effects of GYY4137 on the mitochondrial function of endothelial cells remain unclear, while this cell type comprises the first target cell after parenteral administration. Here, we specifically assessed whether human endothelial cells possess a functional sulfide:quinone oxidoreductase (SQOR), to oxidise GYY4137-released H2S within the mitochondria for electron donation to the electron transport chain. We demonstrate that H2S administration increases oxygen consumption by human umbilical vein endothelial cells (HUVECs), which does not occur in the SQOR-deficient cell line SH-SY5Y. GYY4137 releases H2S in HUVECs in a dose- and time-dependent fashion as quantified by oxygen consumption and confirmed by lead acetate assay, as well as AzMC fluorescence. Scavenging of intracellular H2S using zinc confirmed intracellular and intramitochondrial sulfur, which resulted in mitotoxic zinc sulfide (ZnS) precipitates. Together, GYY4137 increases intramitochondrial H2S and boosts oxygen consumption of endothelial cells, which is likely governed via the oxidation of H2S by SQOR. This mechanism in endothelial cells may be instrumental in regulating H2S levels in blood and organs but can also be exploited to quantify H2S release by soluble donors such as GYY4137 in living systems.</p
Plasma Free Thiol Levels during Early Sepsis Predict Future Renal Function Decline
Sepsis is a life-threatening syndrome characterized by acute organ dysfunction due to infection. In particular, acute kidney injury (AKI) is common among patients with sepsis and is associated with increased mortality and morbidity. Oxidative stress is an important contributor to the pathogenesis of sepsis-related AKI. Plasma free thiols (R-SH) reflect systemic oxidative stress since they are readily oxidized by reactive species and thereby serve as antioxidants. Here, we aimed to assess the concentrations of serum free thiols in sepsis and associate these with major adverse kidney events (MAKE). Adult non-trauma patients who presented at the emergency department (ED) with a suspected infection were included. Free thiol levels and ischemia-modified albumin (IMA), a marker of oxidative stress, were measured in plasma at baseline, at the ward, and at three months, and one year after hospitalization. Plasma free thiol levels were lower at the ED visit and at the ward as compared to three months and one year after hospital admission (p < 0.01). On the contrary, plasma levels of IMA were higher at the ED and at the ward compared to three months and one year after hospital admission (p < 0.01). Furthermore, univariate logistic regression analyses showed that plasma free thiol levels at the ED were inversely associated with long-term renal function decline and survival at 90 days (MAKE90) and 365 days (MAKE365) (OR 0.43 per standard deviation [SD] [0.22-0.82, 95% CI], p = 0.011 and OR 0.58 per SD [0.34-0.96, 95% CI], p = 0.035, respectively). A multivariate regression analysis revealed an independent association of plasma free thiols at the ED (OR 0.52 per SD [0.29-0.93, 95% CI], p = 0.028) with MAKE365, even after adjustments for age, eGFR at the ED, SOFA score, and cardiovascular disease. These data indicate the clear role of oxidative stress in the pathogenesis of sepsis-AKI, as reflected in the lower plasma free thiol levels and increased levels of IMA
Acute Kidney Injury is Associated with Lowered Plasma-Free Thiol Levels
Acute kidney injury (AKI) is associated with the abrupt loss of kidney function. Oxidative stress plays an important role in the pathophysiology of AKI. Free thiols (R-SH) are crucial components of the extracellular antioxidant machinery and reliably reflect systemic oxidative stress. Lower levels of thiols represent higher levels of oxidative stress. In this preliminary study, we hypothesized that plasma-free thiols are associated with AKI upon admission to the intensive care unit (ICU). In this study, 301 critically ill patients were included. Plasma samples were taken upon admission, and albumin-adjusted plasma-free thiols were determined. Albumin-adjusted plasma-free thiols were lower in patients with AKI (n = 43, median (interquartile range) 7.28 mu mol/g (3.52, 8.95)) compared to patients without AKI (8.50 mu mol/g (5.82, 11.28); p < 0.05) upon admission to the ICU. Higher age (B = -0.72), higher levels of neutrophil gelatinase-associated lipocalin (B = -0.002), creatinine (B = -0.01) and lower serum albumin (B = 0.47) were associated with lower free thiol levels. Further, albumin-adjusted free thiol levels were significantly reduced in patients with sepsis (8.30 (5.52-10.64) mu mol/g) compared to patients without sepsis (6.95 (3.72-8.92) mu mol/g; p < 0.05). Together, albumin-adjusted plasma-free thiols were significantly reduced in patients with AKI and patients with sepsis compared with patients without AKI and sepsis
Influence of short-term dietary measures on dioxin concentrations in human milk.
Breast-feeding may expose infants to high levels of toxic chlorinated dioxins. To diminish intake of these lipophilic compounds by the baby, two diets were tested for their ability to reduce concentrations of dioxins in human milk. The diets were a low-fat/high- carbohydrate/low-dioxin diet. (about 20% of energy intake derived from fat) and a high fat /low-carbohydrate/low-dioxin diet. These diets were tested in 16 and 18 breast-feeding women, respectively. The test diets were followed for 5 consecutive days in the fourth week after delivery. Milk was sampled before and at the end of the dietary regimen, and dioxin concentrations and fatty acid concentrations were determined. Despite significant influences of these diets on the fatty acid profiles, no significant influence on the dioxin concentrations in breast milk could be found. We conclude that short-term dietary measures will not reduce dioxin concentration in human milk
A high urea-to-creatinine ratio predicts long-term mortality independent of acute kidney injury among patients hospitalized with an infection
Acute kidney injury (AKI) occurs frequently in patients with sepsis. Persistent AKI is, in contrast to transient AKI, associated with reduced long-term survival after sepsis, while the effect of AKI on survival after non-septic infections remains unknown. As prerenal azotaemia is a common cause of transient AKI that might be identified by an increased urea-to-creatinine ratio, we hypothesized that the urea-to-creatinine ratio may predict the course of AKI with relevance to long-term mortality risk. We studied the association between the urea-to-creatinine ratio, AKI and long-term mortality among 665 patients presented with an infection to the ED with known pre-existent renal function. Long-term survival was reduced in patients with persistent AKI. The urea-to-creatinine ratio was not associated with the incidence of either transient or non-recovered AKI. In contrast, stratification according to the urea-to-creatinine-ratio identifies a group of patients with a similar long-term mortality risk as patients with persistent AKI. Non-recovered AKI is strongly associated with all-cause long-term mortality after hospitalization for an infection. The urea-to-creatinine ratio should not be employed to predict prerenal azotaemia, but identifies a group of patients that is at increased risk for long-term mortality after infections, independent of AKI and sepsis
Association between oxidized nucleobases and mitochondrial DNA damage with long-term mortality in patients with sepsis
BACKGROUND: Sepsis not only leads to short-term mortality during hospitalization, but is also associated with increased mortality during long-term follow-up after hospital discharge. Metabolic stress during sepsis may cause oxidative damage to both nuclear and mitochondrial DNA (mtDNA) and RNA, which could affect long-term health and life span. Therefore, the aim of this study was to assess the association of sepsis with oxidized nucleobases and (mt)DNA damage and long-term all-cause mortality in septic patients. METHODS: 91 patients with sepsis who visited the emergency department (ED) of the University Medical Center Groningen between August 2012 and June 2013 were included. Urine and plasma were collected during the ED visit. Septic patients were matched with 91 healthy controls. Death rate was obtained until June 2020.The degree of oxidation of DNA, RNA and free nucleobases were assessed in urine by mass-spectrometry. Lipid peroxidation was assessed in plasma using a TBAR assay. Additionally, plasma levels of mtDNA and damage to mtDNA were determined by qPCR. RESULTS: Sepsis patients denoted higher levels of oxidated DNA, RNA, free nucleobases and lipid peroxidation than controls (all p < 0.01). Further, sepsis patients displayed an increase in plasma mtDNA with an increase in mtDNA damage compared to matched controls (p < 0.01). Kaplan meier survival analyses revealed that high degrees of RNA- and nucleobase oxidation were associated with higher long-term all-cause mortality after sepsis (p < 0.01 and p = 0.01 respectively). Of these two, high RNA oxidation was associated with long-term all-cause mortality, independent of adjustment for age, medical history and sepsis severity (HR 1.29 [(1.17-1.41, 95% CI] p < 0.01). CONCLUSIONS: Sepsis is accompanied with oxidation of nuclear and mitochondrial DNA and RNA, where RNA oxidation is an independent predictor of long-term all-cause mortality. In addition, sepsis causes mtDNA damage and an increase in cell free mtDNA in plasma