820 research outputs found

    Determination of Interaction Potentials of Amino Acids from Native Protein Structures: Test on Simple Lattice Models

    Full text link
    We propose a novel method for the determination of the effective interaction potential between the amino acids of a protein. The strategy is based on the combination of a new optimization procedure and a geometrical argument, which also uncovers the shortcomings of any optimization procedure. The strategy can be applied on any data set of native structures such as those available from the Protein Data Bank (PDB). In this work, however, we explain and test our approach on simple lattice models, where the true interactions are known a priori. Excellent agreement is obtained between the extracted and the true potentials even for modest numbers of protein structures in the PDB. Comparisons with other methods are also discussed.Comment: 24 pages, 4 figure

    Superradiance and exciton delocalization in bacterial photosynthetic light-harvesting systems.

    Get PDF
    LH-2 complexes of Rhodobacter sphaeroides and on the isolated B820 subunit of Rhodospirillum rubrum. From these measurements the superradiance is calculated, which is related to the delocalization of excitations in these complexes. In the B820 preparation we find a radiative rate that is 30 % higher than that of monomeric bacteriochlorophyll, in agreement with a dimer model of this subunit. At room temperature both LH-1 and LH-2 are superradiant relative to monomeric Bchl-a with enhancement factors of 3.8 and 2.8, respectively. In LH-2 the radiative rate does not change significantly upon lowering the temperature to 4 K. LH-1 however exhibits a strong temperature dependence, giving rise to a 2.4 times higher radiative rate at 4 K relative to room temperature. From modeling of the superradiance using a Hamiltonian based on the LH-2 structure and including site inhomogeneity, we conclude that the ratio of inhomogeneity over the coupling betwee

    A Novel Perspective on Interference Control and Distraction in ADHD

    Get PDF
    Sergeant, J.A. [Promotor]Oosterlaan, J. [Promotor

    Long-lived charge-separated states in bacterial reaction centers isolated from Rhodobacter sphaeroides

    Get PDF
    AbstractWe studied the accumulation of long-lived charge-separated states in reaction centers isolated from Rhodobacter sphaeroides, using continuous illumination, or trains of single-turnover flashes. We found that under both conditions a long-lived state was produced with a quantum yield of about 1%. This long-lived species resembles the normal P+Q− state in all respects, but has a lifetime of several minutes. Under continuous illumination the long-lived state can be accumulated, leading to close to full conversion of the reaction centers into this state. The lifetime of this accumulated state varies from a few minutes up to more than 20 min, and depends on the illumination history. Surprisingly, the lifetime and quantum yield do not depend on the presence of the secondary quinone, QB. Under oxygen-free conditions the accumulation was reversible, no changes in the normal recombination times were observed due to the intense illumination. The long-lived state is responsible for most of the dark adaptation and hysteresis effects observed in room temperature experiments. A simple method for quinone extraction and reconstitution was developed

    Three-pulse photon echo measurements on LH1 and LH2 complexes of Rhodobacter sphaeroides: A nonlinear spectroscopic probe of energy transfer.

    Get PDF
    Three-pulse echo peak shift measurements were performed on the B875 and B850 bands of detergent-isolated LH1 and LH2 complexes at room temperature. The peak shifts are much larger and decay much faster than typically observed for dye molecules in solution. Simulations of the peak shifts based on the optical transition frequency correlation function,M(t), are presented. M(t) includes contributions from rapid protein fluctuations, vibrational motion, and energy transfer. The model reproduces the room temperature absorption spectra of B850 and B875, shows that the coupling of electronic and nuclear degrees of freedom is much weaker than for dyes in solution, and identifies contributions to the line shapes that may be important to the energy transfer processes. The implications of these results for the extent of electronic delocalization in LH1 and LH2 are also discussed. Although the role of coherence transfer still needs to be understood, the results are shown to be consistent with the use of weak-coupling excitation transfer models of B850 and B875. I

    Model reduction for controller design for infinite-dimensional systems:theory and an example

    Get PDF

    Cluster derivation of Parisi's RSB solution for disordered systems

    Full text link
    We propose a general scheme in which disordered systems are allowed to sacrifice energy equi-partitioning and separate into a hierarchy of ergodic sub-systems (clusters) with different characteristic time-scales and temperatures. The details of the break-up follow from the requirement of stationarity of the entropy of the slower cluster, at every level in the hierarchy. We apply our ideas to the Sherrington-Kirkpatrick model, and show how the Parisi solution can be {\it derived} quantitatively from plausible physical principles. Our approach gives new insight into the physics behind Parisi's solution and its relations with other theories, numerical experiments, and short range models.Comment: 7 pages 5 figure

    Survey propagation for the cascading Sourlas code

    Full text link
    We investigate how insights from statistical physics, namely survey propagation, can improve decoding of a particular class of sparse error correcting codes. We show that a recently proposed algorithm, time averaged belief propagation, is in fact intimately linked to a specific survey propagation for which Parisi's replica symmetry breaking parameter is set to zero, and that the latter is always superior to belief propagation in the high connectivity limit. We briefly look at further improvements available by going to the second level of replica symmetry breaking.Comment: 14 pages, 5 figure

    The low-energy forms of photosystem I light-harvesting complexes: Spectroscopic properties and pigment-pigment interaction characteristics

    Get PDF
    In this work the spectroscopic properties of the special low-energy absorption bands of the outer antenna complexes of higher plant Photosystem I have been investigated by means of low-temperature absorption, fluorescence, and fluorescence line-narrowing experiments. It was found that the red-most absorption bands of Lhca3, Lhca4, and Lhca1-4 peak, respectively, at 704, 708, and 709 nm and are responsible for 725-, 733-, and 732-nm fluorescence emission bands. These bands are more red shifted compared to "normal" chlorophyll a (Chl a) bands present in light-harvesting complexes. The low-energy forms are characterized by a very large bandwidth (400-450 c
    corecore