49,142 research outputs found
Alignment based Network Coding for Two-Unicast-Z Networks
In this paper, we study the wireline two-unicast-Z communication network over
directed acyclic graphs. The two-unicast-Z network is a two-unicast network
where the destination intending to decode the second message has apriori side
information of the first message. We make three contributions in this paper:
1. We describe a new linear network coding algorithm for two-unicast-Z
networks over directed acyclic graphs. Our approach includes the idea of
interference alignment as one of its key ingredients. For graphs of a bounded
degree, our algorithm has linear complexity in terms of the number of vertices,
and polynomial complexity in terms of the number of edges.
2. We prove that our algorithm achieves the rate-pair (1, 1) whenever it is
feasible in the network. Our proof serves as an alternative, albeit restricted
to two-unicast-Z networks over directed acyclic graphs, to an earlier result of
Wang et al. which studied necessary and sufficient conditions for feasibility
of the rate pair (1, 1) in two-unicast networks.
3. We provide a new proof of the classical max-flow min-cut theorem for
directed acyclic graphs.Comment: The paper is an extended version of our earlier paper at ITW 201
Microstructure, magneto-transport and magnetic properties of Gd-doped magnetron-sputtered amorphous carbon
The magnetic rare earth element gadolinium (Gd) was doped into thin films of
amorphous carbon (hydrogenated \textit{a}-C:H, or hydrogen-free \textit{a}-C)
using magnetron co-sputtering. The Gd acted as a magnetic as well as an
electrical dopant, resulting in an enormous negative magnetoresistance below a
temperature (). Hydrogen was introduced to control the amorphous carbon
bonding structure. High-resolution electron microscopy, ion-beam analysis and
Raman spectroscopy were used to characterize the influence of Gd doping on the
\textit{a-}GdC(:H) film morphology, composition, density and
bonding. The films were largely amorphous and homogeneous up to =22.0 at.%.
As the Gd doping increased, the -bonded carbon atoms evolved from
carbon chains to 6-member graphitic rings. Incorporation of H opened up the
graphitic rings and stabilized a -rich carbon-chain random network. The
transport properties not only depended on Gd doping, but were also very
sensitive to the ordering. Magnetic properties, such as the spin-glass
freezing temperature and susceptibility, scaled with the Gd concentration.Comment: 9 figure
The improvement of aluminium casting process control by application of the new CRIMSON process
All The traditional foundry usually not only uses batch melting where the
aluminium alloys are melted and held in a furnace for long time, but also uses
the gravity filling method in both Sand Casting Process (SCP) and Investment
Casting Process (ICP). In the gravity filling operation, the turbulent behaviour
of the liquid metal causes substantial entrainment of the surface oxide films
which are subsequently trapped into the liquid and generate micro cracks and
casting defects. In this paper a new CRIMSON process is introduced which
features instead of gravity filling method, using the single shot up-casting
method to realize the rapid melting and rapid filling mould operations which
reduce the contact time between the melt and environment thus reducing the
possibility of defect generation. Another advantage of the new process is the
drastic reduction of energy consumption due to shortened melting and filling
time. Two types of casting samples from SCP and ICP were compared with the new
process. The commercial software was used to simulate the filling and
solidification processes of the casting samples. The results show that the new
process has a more improved behaviour during filling a mould and solidification
than the two conventional casting processes
Electrostatic patch effects in Casimir force experiments performed in the sphere-plane geometry
Patch potentials arising from the polycrystalline structure of material
samples may contribute significantly to measured signals in Casimir force
experiments. Most of these experiments are performed in the sphere-plane
geometry, yet, up to now all analysis of patch effects has been taken into
account using the proximity force approximation which, in essence, treats the
sphere as a plane. In this paper we present the exact solution for the
electrostatic patch interaction energy in the sphere- plane geometry, and
derive exact analytical formulas for the electrostatic patch force and
minimizing potential. We perform numerical simulations to analyze the distance
dependence of the minimizing potential as a function of patch size, and
quantify the sphere-plane patch force for a particular patch layout. Once the
patch potentials on both surfaces are measured by dedicated experiments our
formulas can be used to exactly quantify the sphere-plane patch force in the
particular experimental situation.Comment: 13 pages, 4 figure
Ab Initio Simulation of the Nodal Surfaces of Heisenberg Antiferromagnets
The spin-half Heisenberg antiferromagnet (HAF) on the square and triangular
lattices is studied using the coupled cluster method (CCM) technique of quantum
many-body theory. The phase relations between different expansion coefficients
of the ground-state wave function in an Ising basis for the square lattice HAF
is exactly known via the Marshall-Peierls sign rule, although no equivalent
sign rule has yet been obtained for the triangular lattice HAF. Here the CCM is
used to give accurate estimates for the Ising-expansion coefficients for these
systems, and CCM results are noted to be fully consistent with the
Marshall-Peierls sign rule for the square lattice case. For the triangular
lattice HAF, a heuristic rule is presented which fits our CCM results for the
Ising-expansion coefficients of states which correspond to two-body excitations
with respect to the reference state. It is also seen that Ising-expansion
coefficients which describe localised, -body excitations with respect to the
reference state are found to be highly converged, and from this result we infer
that the nodal surface of the triangular lattice HAF is being accurately
modeled. Using these results, we are able to make suggestions regarding
possible extensions of existing quantum Monte Carlo simulations for the
triangular lattice HAF.Comment: 24 pages, Latex, 3 postscript figure
Integrable dispersionless KdV hierarchy with sources
An integrable dispersionless KdV hierarchy with sources (dKdVHWS) is derived.
Lax pair equations and bi-Hamiltonian formulation for dKdVHWS are formulated.
Hodograph solution for the dispersionless KdV equation with sources (dKdVWS) is
obtained via hodograph transformation. Furthermore, the dispersionless
Gelfand-Dickey hierarchy with sources (dGDHWS) is presented.Comment: 15 pages, to be published in J. Phys. A: Math. Ge
- …
