154 research outputs found

    Expression of TLP-3 gene without signal peptide in tobacco plants using Agrobacterium mediated transformation

    Get PDF
    Plants are exploited as a source of food by a wide range of parasites, including viruses, bacteria, fungi, nematodes, insects and even other plants. So paying attention to their protection is very important. One of the most important groups of defensive gene is pathogenesis-related (PR) proteins. PR proteins are a group of plant proteins which accumulate as a result of different types of pathogens attack. Thaumatinlike proteins (TLPs) belonging to the PR proteins, plays an important role in plant defense against pathogen invasions. Agrobacterium-mediated transformation is routinely used for the transformation of many plants. In the present study, thaumatin-like TLP-3 gene without signal peptide was transferred into tobacco plants through Agrobacterium-mediated technology. The PCR and RT-PCR assays confirmed the presence of TLP-3 gene and TLP-3 mRNA in transgenic tobacco plants, respectively. The bioassay results showed the activity of TLP-3 against Alternaria alternata in microscopic experiment. This is the first report of the expression of TLP-3 gene without signal peptide in tobacco plants using Agrobacterium mediated transformation and it confirmed the ability of the gene action in another plant.Key words: Thaumatin like protein, Agrobacterium, signal peptide, Alternaria alternate

    Control of nuclear-cytoplasmic shuttling of Ankrd54 by PKCδ

    Get PDF
    AIM To identify and characterize the effect of phosphorylation on the subcellular localization of Ankrd54. METHODS HEK293T cells were treated with calyculin A, staurosporin or phorbol 12-myristate 13-acetate (PMA). Cells were transfected with eGFP-tagged Ankrd54 with or without Lyn tyrosine kinase (wild-type, Y397F mutant, or Y508F mutant). The subcellular localization was assessed by immunofluorescence imaging of cells, immunoblotting of subcellular fractionations. The phosphorylation of Ankrd54 was monitored using Phos-tagTM gel retardation. Phosphorylated peptides were analysed by multiple-reaction-monitoring (MRM) proteomic analysis. RESULTS Activation of PKC kinases using PMA promoted nuclear export of Ankrd54 and correlated with increased Ankrd54 phosphorylation, assayed using Phos-tagTM gel retardation. Co-expression of an active form of the PKCδ isoform specifically promoted both phosphorylation and cytoplasmic localization of Ankrd54, while PKCδ, Akt and PKA did not. Alanine mutation of several serine residues in the amino-terminal region of Ankrd54 (Ser14, Ser17, Ser18, Ser19) reduced both PMA induced cytoplasmic localization and phosphorylation of Ankrd54. Using MRM proteomic analysis, phosphorylation of the Ser18 residue of Ankrd54 was readily detectable in response to PMA stimulation. PMA stimulation of cells co-expressing Ankrd54 and Lyn tyrosine kinase displayed increased co-immunoprecipitation and enhanced co-localization in the cytoplasm. CONCLUSION We identify phosphorylation by PKCδ as a major regulator of nuclear-cytoplasmic shuttling of Ankrd54, and its interaction with the tyrosine kinase Lyn

    Exploiting zinc oxide re-emission to fabricate periodic arrays

    Full text link
    The synthesis of hexagonal ring-shaped structures of zinc oxide using nanosphere lithography and metal/metal oxide sputtering is demonstrated. This synthesis exploits the surface re-emission of zinc oxide to deposit material in regions lying out of the line-of-sight of the sputtering source. These rings can nucleate the hydrothermal growth of zinc oxide crystals. Control over the growth could be exercised by varying growth solution concentration or temperature or by applying an external potential. © 2010 American Chemical Society

    Quantitative Histomorphometry of the Healthy Peritoneum

    Get PDF
    The peritoneum plays an essential role in preventing abdominal frictions and adhesions and can be utilized as a dialysis membrane. Its physiological ultrastructure, however, has not yet been studied systematically. 106 standardized peritoneal and 69 omental specimens were obtained from 107 patients (0.1-60 years) undergoing surgery for disease not affecting the peritoneum for automated quantitative histomorphometry and immunohistochemistry. The mesothelial cell layer morphology and protein expression pattern is similar across all age groups. Infants below one year have a thinner submesothelium; inflammation, profibrotic activity and mesothelial cell translocation is largely absent in all age groups. Peritoneal blood capillaries, lymphatics and nerve fibers locate in three distinct submesothelial layers. Blood vessel density and endothelial surface area follow a U-shaped curve with highest values in infants below one year and lowest values in children aged 7-12 years. Lymphatic vessel density is much lower, and again highest in infants. Omental blood capillary density correlates with parietal peritoneal findings, whereas only few lymphatic vessels are present. The healthy peritoneum exhibits major thus far unknown particularities, pertaining to functionally relevant structures, and subject to substantial changes with age. The reference ranges established here provide a framework for future histomorphometric analyses and peritoneal transport modeling approaches. © 2016, EDP Science. All rights reserved

    The Level of Protein in Milk Formula Modifies Ileal Sensitivity to LPS Later in Life in a Piglet Model

    Get PDF
    Background: Milk formulas have higher protein contents than human milk. This high protein level could modify the development of intestinal microbiota, epithelial barrier and immune functions and have long-term consequences. Methodology/Principal findings: We investigated the effect of a high protein formula on ileal microbiota and physiology during the neonatal period and later in life. Piglets were fed from 2 to 28 days of age either a normoprotein (NP, equivalent to sow milk) or a high protein formula (HP, +40% protein). Then, they received the same solid diet until 160 days. During the formula feeding period ileal microbiota implantation was accelerated in HP piglets with greater concentrations of ileal bacteria at d7 in HP than NP piglets. Epithelial barrier function was altered with a higher permeability to small and large probes in Ussing chambers in HP compared to NP piglets without difference in bacterial translocation. Infiltration of T cells was increased in HP piglets at d28. IL-1b and NF-kappa B sub-units mRNA levels were reduced in HP piglets at d7 and d28 respectively; plasma haptoglobin also tended to be reduced at d7. Later in life, pro-inflammatory cytokines secretion in response to high doses of LPS in explants culture was reduced in HP compared to NP piglets. Levels of mRNA coding the NF-kappa B pathway sub-units were increased by the challenge with LPS in NP piglets, but not HP ones. Conclusions/Significance: A high protein level in formula affects the postnatal development of ileal microbiota, epithelial barrier and immune function in piglets and alters ileal response to inflammatory mediators later in life

    One-year risk of stroke after transient ischemic attack or minor stroke in Hunter New England, Australia (INSIST study)

    Get PDF
    Background: One-year risk of stroke in transient ischemic attack and minor stroke (TIAMS) managed in secondary care settings has been reported as 5-8%. However, evidence for the outcomes of TIAMS in community care settings is limited. Methods: The INternational comparison of Systems of care and patient outcomes In minor Stroke and TIA (INSIST) study was a prospective inception cohort community-based study of patients of 16 general practices in the Hunter–Manning region (New South Wales, Australia). Possible-TIAMS patients were recruited from 2012 to 2016 and followed-up for 12 months post-index event. Adjudication as TIAMS or TIAMS-mimics was by an expert panel. We established 7-day, 90-day, and one-year risk of stroke, TIA, myocardial infarction (MI), coronary or carotid revascularization procedure and death; and medications use at 24 hours post-event. Results: Of 613 participants (mean age; 70 ± 12 years), 298 (49%) were adjudicated as TIAMS. TIAMS-group participants had ischemic strokes at 7-days, 90-days, and one-year, at Kaplan-Meier (KM) rates of 1% (95% confidence interval; 0.3, 3.1), 2.1% (0.9, 4.6), and 3.2% (1.7, 6.1), respectively, compared to 0.3%, 0.3% and 0.6% of TIAMS-mimic-group participants. At one year, TIAMS-group-participants had twenty-five TIA events (KM rate: 8.8%), two MI events (0.6%), four coronary revascularization (1.5%), eleven carotid revascularization (3.9%) and three death (1.1%), compared to 1.6%, 0.6%, 1.0%, 0.3% and 0.6% of TIAMS-mimic-group participants. Of 167 TIAMS-group participants who commenced or received enhanced therapies, 95 (57%) were treated within 24 hours post-index event. For TIAMS-group participants who commenced or received enhanced therapies, time from symptom onset to treatment was median 9.5 hours [IQR 1.8-89.9]). Conclusion: One-year risk of stroke in TIAMS participants was lower than reported in previous studies. Early implementation of antiplatelet/anticoagulant therapies may have contributed to the low stroke recurrence

    Gut-central nervous system axis is a target for nutritional therapies

    Get PDF
    Historically, in the 1950s, the chemist Linus Pauling established a relationship between decreased longevity and obesity. At this time, with the advent of studies involving the mechanisms that modulate appetite control, some researchers observed that the hypothalamus is the "appetite centre" and that peripheral tissues have important roles in the modulation of gut inflammatory processes and levels of hormones that control food intake. Likewise, the advances of physiological and molecular mechanisms for patients with obesity, type 2 diabetes mellitus, inflammatory bowel diseases, bariatric surgery and anorexia-associated diseases has been greatly appreciated by nutritionists. Therefore, this review highlights the relationship between the gut-central nervous system axis and targets for nutritional therapies

    Anisotropic nanomaterials: structure, growth, assembly, and functions

    Get PDF
    Comprehensive knowledge over the shape of nanomaterials is a critical factor in designing devices with desired functions. Due to this reason, systematic efforts have been made to synthesize materials of diverse shape in the nanoscale regime. Anisotropic nanomaterials are a class of materials in which their properties are direction-dependent and more than one structural parameter is needed to describe them. Their unique and fine-tuned physical and chemical properties make them ideal candidates for devising new applications. In addition, the assembly of ordered one-dimensional (1D), two-dimensional (2D), and three-dimensional (3D) arrays of anisotropic nanoparticles brings novel properties into the resulting system, which would be entirely different from the properties of individual nanoparticles. This review presents an overview of current research in the area of anisotropic nanomaterials in general and noble metal nanoparticles in particular. We begin with an introduction to the advancements in this area followed by general aspects of the growth of anisotropic nanoparticles. Then we describe several important synthetic protocols for making anisotropic nanomaterials, followed by a summary of their assemblies, and conclude with major applications
    corecore