381 research outputs found

    Irreversible magnetization in thin YBCO films rotated in external magnetic field

    Full text link
    The magnetization M of a thin YBaCuO film is measured as a function of the angle θ\theta between the applied field H and the c-axis. For fields above the first critical field, but below the Bean's field for first penetration H*, M is symmetric with respect to θ=π\theta =\pi and the magnetization curves for forward and backward rotation coincide. For H>H* the curves are asymmetric and they do not coincide. These phenomena have a simple explanation in the framework of the Bean critical state model.Comment: 14 pages, 7 PostScript figure

    Silicon micromachined hollow microneedles for transdermal liquid transfer

    Get PDF
    This paper presents an improved design and fabrication process [ 13 for hollow micro needles with the proper mechanical strength and sharpness to be applied for painless transdermal transfer of liquids. Tests have shown that liquids like blood are drawn into the needle by capillary forces, reducing the need for active pumping. The fabrication method allows different needle shapes like blades and pencils, is robust enough to be applied for largerscale production, and enables the development of a complete micro-TAS for e.g. blood analysis

    The pseudo‐brookite spin‐glass system studied by means of muon spin relaxation

    Get PDF
    Zero-field muon spin relaxation (µSR) experiments have been performed on the spin glass Fe1.75Ti1.25O5. Above the spin-glass temperature of 44 K a distinct exponential µSR rate (¿) is observed, while below Tg a square-root exponential decay occurs, indicating fast spin fluctuations. Near 8 K, a maximum in ¿ is indicative of transverse spin ordering. The low ¿ values and the sharp ¿ peak at Tg are very promising for the study of spin freezing models like the Vogel–Fulcher law or the power law

    Critical currents, flux-creep activation energy and potential barriers for the vortex motion from the flux creep experiments

    Full text link
    We present an experimental study of thermally activated flux creep in a superconducting ring-shaped epitaxial YBCO film as well as a new way of analyzing the experimental data. The measurements were made in a wide range of temperatures between 10 and 83 K. The upper temperature limit was dictated by our experimental technique and at low temperatures we were limited by a crossover to quantum tunneling of vortices. It is shown that the experimental data can very well be described by assuming a simple thermally activated hopping of vortices or vortex bundles over potential barriers, whereby the hopping flux objects remain the same for all currents and temperatures. The new procedure of data analysis also allows to establish the current and temperature dependencies of the flux-creep activation energy U, as well as the temperature dependence of the critical current Ic, from the flux-creep rates measured at different temperatures. The variation of the activation energy with current, U(I/Ic), is then used to reconstruct the profile of the potential barriers in real space.Comment: 12 pages, 13 Postscript figures, Submitted to Physical Review

    Hydrodynamic Instability of the Flux-antiflux Interface in Type-II Superconductors

    Full text link
    The macroturbulence instability observed in fluxline systems during remagnetization of superconductors is explained. It is shown that when a region with flux is invaded by antiflux the interface can become unstable if there is a relative tangential flux motion. This condition occurs at the interface when the viscosity is anisotropic, e.g., due to flux guiding by twin boundaries in crystals. The phenomenon is similar to the instability of the tangential discontinuity in classical hydrodynamics. The obtained results are supported by magneto-optical observations of flux distribution on the surface of a YBCO single crystal with twins.Comment: 12 pages, 3 figures, submitted to Physical Review Letter

    Vortex avalanches and magnetic flux fragmentation in superconductors

    Full text link
    We report results of numerical simulations of non isothermal dendritic flux penetration in type-II superconductors. We propose a generic mechanism of dynamic branching of a propagating hotspot of a flux flow/normal state triggered by a local heat pulse. The branching occurs when the flux hotspot reflects from inhomogeneities or the boundary on which magnetization currents either vanish, or change direction. Then the hotspot undergoes a cascade of successive splittings, giving rise to a dissipative dendritic-type flux structure. This dynamic state eventually cools down, turning into a frozen multi-filamentary pattern of magnetization currents.Comment: 4 pages, 4 figures, accepted to Phys. Rev. Let
    corecore