1,071 research outputs found

    WWIV: Who We’re Fighting- And Why

    Get PDF
    We witnessed three global wars in the past century. Only a decade ago we ended WWIII, also known as the Cold War. But a new enemy has been on the march and we have entered a dangerous but subtler conflict: World War IV. This is not only a war against terrorism but also a war for democracy and for freedom. The enemy we fight includes Islamist Shi\u27sm, the Ba\u27athists in Iraq, and the Islamist Sunni terrorist networks. The dangers we face arise from the combination of rogue states, terrorist networks and availability of Weapons of Mass Destruction. Mr. Woolsey says that World War IV, as he calls it, will be fought heavily on the home front and that we must improve the resilience of our infrastructure to assure our capacity to win a long, difficult conflict

    Politics, Power, and Influence: How to Create Your Own State.

    Get PDF

    The effect of grading the atomic number at resistive guide element interface on magnetic collimation

    Get PDF
    Using 3 dimensional numerical simulations, this paper shows that grading the atomic number and thus the resistivity at the interface between an embedded high atomic number guide element and a lower atomic number substrate enhances the growth of a resistive magnetic field. This can lead to a large integrated magnetic flux density, which is fundamental to confining higher energy fast electrons. This results in significant improvements in both magnetic collimation and fast-electron-temperature uniformity across the guiding. The graded interface target provides a method for resistive guiding that is tolerant to laser pointing

    Calibrating the relation of low-frequency radio continuum to star formation rate at 1 kpc scale with LOFAR

    Get PDF
    9 figures, 6 tables and 17 pages. This paper is part of the LOFAR surveys data release 1 and has been accepted for publication in a special edition of A&A that will appear in Feb 2019, volume 622. The catalogues and images from the data release will be publicly available on lofar-surveys.org upon publication of the journal. Reproduced with permission from Astronomy & Astrophysics. © 2018 ESO.Radio continuum (RC) emission in galaxies allows us to measure star formation rates (SFRs) unaffected by extinction due to dust, of which the low-frequency part is uncontaminated from thermal (free-free) emission. We calibrate the conversion from the spatially resolved 140 MHz RC emission to the SFR surface density (ΣSFR\Sigma_{\rm SFR}) at 1 kpc scale. We used recent observations of three galaxies (NGC 3184, 4736, and 5055) from the LOFAR Two-metre Sky Survey (LoTSS), and archival LOw-Frequency ARray (LOFAR) data of NGC 5194. Maps were created with the facet calibration technique and converted to radio ΣSFR\Sigma_{\rm SFR} maps using the Condon relation. We compared these maps with hybrid ΣSFR\Sigma_{\rm SFR} maps from a combination of GALEX far-ultraviolet and Spitzer 24 μm\mu\rm m data using plots tracing the relation at 1.2×1.21.2\times 1.2-kpc2^2 resolution. The RC emission is smoothed with respect to the hybrid ΣSFR\Sigma_{\rm SFR} owing to the transport of cosmic-ray electrons (CREs). This results in a sublinear relation (ΣSFR)RC[(ΣSFR)hyb]a(\Sigma_{\rm SFR})_{\rm RC} \propto [(\Sigma_{\rm SFR})_{\rm hyb}]^{a}, where a=0.59±0.13a=0.59\pm 0.13 (140 MHz) and a=0.75±0.10a=0.75\pm 0.10 (1365 MHz). Both relations have a scatter of σ=0.3 dex\sigma = 0.3~\rm dex. If we restrict ourselves to areas of young CREs (α>0.65\alpha > -0.65; IνναI_\nu \propto \nu^\alpha), the relation becomes almost linear at both frequencies with a0.9a\approx 0.9 and a reduced scatter of σ=0.2 dex\sigma = 0.2~\rm dex. We then simulate the effect of CRE transport by convolving the hybrid ΣSFR\Sigma_{\rm SFR} maps with a Gaussian kernel until the RC-SFR relation is linearised; CRE transport lengths are l=1l=1-5 kpc. Solving the CRE diffusion equation, we find diffusion coefficients of D=(0.13D=(0.13-1.5)×1028cm2s11.5) \times 10^{28} \rm cm^2\,s^{-1} at 1 GeV. A RC-SFR relation at 1.41.4 GHz can be exploited to measure SFRs at redshift z10z \approx 10 using 140140 MHz observations.Peer reviewe
    corecore