270 research outputs found

    Selection tools and student diversity in health professions education:a multi-site study

    Get PDF
    Student diversity in health professions education (HPE) can be affected by selection procedures. Little is known about how different selection tools impact student diversity across programs using different combinations of traditional and broadened selection criteria. The present multi-site study examined the chances in selection of subgroups of applicants to HPE undergraduate programs with distinctive selection procedures, and their performance on corresponding selection tools. Probability of selection of subgroups (based on gender, migration background, prior education, parental education) of applicants (N = 1935) to five selection procedures of corresponding Dutch HPE undergraduate programs was estimated using multilevel logistic regression. Multilevel linear regression was used to analyze performance on four tools: prior-education grade point average (pe-GPA), biomedical knowledge test, curriculum-sampling test, and curriculum vitae (CV). First-generation Western immigrants and applicants with a foreign education background were significantly less likely to be selected than applicants without a migration background and with pre-university education. These effects did not vary across programs. More variability in effects was found between different selection tools. Compared to women, men performed significantly poorer on CVs, while they had higher scores on biomedical knowledge tests. Applicants with a non-Western migration background scored lower on curriculum-sampling tests. First-generation Western immigrants had lower CV-scores. First-generation university applicants had significantly lower pe-GPAs. There was a variety in effects for applicants with different alternative forms of prior education. For curriculum-sampling tests and CVs, effects varied across programs. Our findings highlight the need for continuous evaluation, identifying best practices within existing tools, and applying alternative tools.</p

    External validation of NTCP-models for radiation pneumonitis in lung cancer patients treated with chemoradiotherapy

    Get PDF
    PURPOSE: Normal tissue complication probability (NTCP) models can be used to estimate the risk of radiation pneumonitis (RP). The aim of this study was to externally validate the most frequently used prediction models for RP, i.e., the QUANTEC and APPELT models, in a large cohort of lung cancer patients treated with IMRT or VMAT. [1-2] METHODS AND MATERIALS: This prospective cohort study, included lung cancer patients treated between 2013 and 2018. A closed testing procedure was performed to test the need for model updating. To improve model performance, modification or removal of variables was considered. Performance measures included tests for goodness of fit, discrimination, and calibration.RESULTS: In this cohort of 612 patients, the incidence of RP ≥ grade 2 was 14.5%. For the QUANTEC-model, recalibration was recommended which resulted in a revised intercept and adjusted regression coefficient (from 0.126 to 0.224) of the mean lung dose (MLD),. The APPELT-model needed revision including model updating with modification and elimination of variables. After revision, the New RP-model included the following predictors (and regression coefficients): MLD (B = 0.250), age (B = 0.049, and smoking status (B = 0.902). The discrimination of the updated APPELT-model was higher compared to the recalibrated QUANTEC-model (AUC: 0.79 vs. 0.73).CONCLUSIONS: This study demonstrated that both the QUANTEC- and APPELT-model needed revision. Next to changes of the intercept and regression coefficients, the APPELT model improved further by model updating and performed better than the recalibrated QUANTEC model. This New RP-model is widely applicable containing non-tumour site specific variables, which can easily be collected.</p

    The Cyclophilin-Binding Agent Sanglifehrin A Is a Dendritic Cell Chemokine and Migration Inhibitor

    Get PDF
    Sanglifehrin A (SFA) is a cyclophilin-binding immunosuppressant but the immunobiology of action is poorly understood. We and others have reported that SFA inhibits IL-12 production and antigen uptake in dendritic cells (DC) and exhibits lower activity against lymphocytes. Here we show that SFA suppresses DC chemokine production and migration. Gene expression analysis and subsequent protein level confirmation revealed that SFA suppressed CCL5, CCL17, CCL19, CXCL9 and CXCL10 expression in human monocyte-derived DC (moDC). A systems biology analysis, Onto Express, confirmed that SFA interferes with chemokine-chemokine receptor gene expression with the highest impact. Direct comparison with the related agent cyclosporine A (CsA) and dexamethasone indicated that SFA uniquely suppresses moDC chemokine expression. Competitive experiments with a 100-fold molar excess of CsA and with N-Methyl-Val-4-cyclosporin, representing a nonimmunosuppressive derivative of CsA indicated chemokine suppression through a cyclophilin-A independent pathway. Functional assays confirmed reduced migration of CD4+ Tcells and moDCs to supernatant of SFA-exposed moDCs. Vice versa, SFA-exposed moDC exhibited reduced migration against CCL19. Moreover, SFA suppressed expression of the ectoenzyme CD38 that was reported to regulate DC migration and cytokine production. These results identify SFA as a DC chemokine and migration inhibitor and provide novel insight into the immunobiology of SFA

    Laser-directed hierarchical assembly of liquid crystal defects and control of optical phase singularities

    Get PDF
    Topological defect lines are ubiquitous and important in a wide variety of fascinating phenomena and theories in many fields ranging from materials science to early-universe cosmology, and to engineering of laser beams. However, they are typically hard to control in a reliable manner. Here we describe facile erasable “optical drawing” of self-assembled defect clusters in liquid crystals. These quadrupolar defect clusters, stabilized by the medium's chirality and the tendency to form twisted configurations, are shaped into arbitrary two-dimensional patterns, including reconfigurable phase gratings capable of generating and controlling optical phase singularities in laser beams. Our findings bridge the studies of defects in condensed matter physics and optics and may enable applications in data storage, singular optics, displays, electro-optic devices, diffraction gratings, as well as in both optically- and electrically-addressed pixel-free spatial light modulators

    The glycoprotein-hormones activin A and inhibin A interfere with dendritic cell maturation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Pregnancy represents an exclusive situation in which the immune and the endocrine system cooperate to prevent rejection of the embryo by the maternal immune system. While immature dendritic cells (iDC) in the early pregnancy decidua presumably contribute to the establishment of peripheral tolerance, glycoprotein-hormones of the transforming growth factor beta (TGF-beta) family including activin A (ActA) and inhibin A (InA) are candidates that could direct the differentiation of DCs into a tolerance-inducing phenotype.</p> <p>Methods</p> <p>To test this hypothesis we generated iDCs from peripheral-blood-monocytes and exposed them to TGF-beta1, ActA, as well as InA and Dexamethasone (Dex) as controls.</p> <p>Results</p> <p>Both glycoprotein-hormones prevented up-regulation of HLA-DR during cytokine-induced DC maturation similar to Dex but did not influence the expression of CD 40, CD 83 and CD 86. Visualization of the F-actin cytoskeleton confirmed that the DCs retained a partially immature phenotype under these conditions. The T-cell stimulatory capacity of DCs was reduced after ActA and InA exposure while the secretion of cytokines and chemokines was unaffected.</p> <p>Conclusion</p> <p>These findings suggest that ActA and InA interfere with selected aspects of DC maturation and may thereby help preventing activation of allogenic T-cells by the embryo. Thus, we have identified two novel members of the TGF-beta superfamily that could promote the generation of tolerance-inducing DCs.</p

    Predictors of low cervical cancer screening among immigrant women in Ontario, Canada

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Disparities in cervical cancer screening are known to exist in Ontario, Canada for foreign-born women. The relative importance of various barriers to screening may vary across ethnic groups. This study aimed to determine how predictors of low cervical cancer screening, reflective of sociodemographics, the health care system, and migration, varied by region of origin for Ontario's immigrant women.</p> <p>Methods</p> <p>Using a validated billing code algorithm, we determined the proportion of women who were not screened during the three-year period of 2006-2008 among 455 864 identified immigrant women living in Ontario's urban centres. We created eight identical multivariate Poisson models, stratified by eight regions of origin for immigrant women. In these models, we adjusted for various sociodemographic, health care-related and migration-related variables. We then used the resulting adjusted relative risks to calculate population-attributable fractions for each variable by region of origin.</p> <p>Results</p> <p>Region of origin was not a significant source of effect modification for lack of recent cervical cancer screening. Certain variables were significantly associated with lack of screening across all or nearly all world regions. These consisted of not being in the 35-49 year age group, residence in the lowest-income neighbourhoods, not being in a primary care patient enrolment model, a provider from the same region, and not having a female provider. For all women, the highest population-attributable risk was seen for not having a female provider, with values ranging from 16.8% [95% CI 14.6-19.1%] among women from the Middle East and North Africa to 27.4% [95% CI 26.2-28.6%] for women from East Asia and the Pacific.</p> <p>Conclusions</p> <p>To increase screening rates across immigrant groups, efforts should be made to ensure that women have access to a regular source of primary care, and ideally access to a female health professional. Efforts should also be made to increase the enrolment of immigrant women in new primary care patient enrolment models.</p

    Effects of immunomodulatory drugs on TNF-α and IL-12 production by purified epidermal langerhans cells and peritoneal macrophages

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Langerhans cells constitute a special subset of immature dendritic cells localized in the epidermis that play a key role in the skin's immune response. The production of cytokines is a key event in both the initiation and the regulation of immune responses, and different drugs can be used to remove or modify their production by DC and, therefore, alter immune responses in a broad spectrum of diseases, mainly in human inflammatory and autoimmune diseases. In the present study, we examined the effects of prednisone, thalidomide, cyclosporine A, and amitriptyline, drugs used in a variety of clinical conditions, on the production of TNF-α, IL-10, and IL-12 by purified epidermal Langerhans cells and peritoneal macrophages in BALB/c mice.</p> <p>Findings</p> <p>All drugs inhibited TNF-α production by Langerhans cells after 36 hours of treatment at two different concentrations, while prednisone and thalidomide decreased IL-12 secretion significantly, amitriptyline caused a less pronounced reduction and cyclosporine A had no effect. Additionally, TNF-α and IL-12 production by macrophages decreased, but IL-10 levels were unchanged after all treatments.</p> <p>Conclusions</p> <p>Our results demonstrate that these drugs modulate the immune response by regulating pro-inflammatory cytokine production by purified epidermal Langerhans cells and peritoneal macrophages, indicating that these cells are important targets for immunosuppression in various clinical settings.</p

    A Molecular Signature of Proteinuria in Glomerulonephritis

    Get PDF
    Proteinuria is the most important predictor of outcome in glomerulonephritis and experimental data suggest that the tubular cell response to proteinuria is an important determinant of progressive fibrosis in the kidney. However, it is unclear whether proteinuria is a marker of disease severity or has a direct effect on tubular cells in the kidneys of patients with glomerulonephritis. Accordingly we studied an in vitro model of proteinuria, and identified 231 “albumin-regulated genes” differentially expressed by primary human kidney tubular epithelial cells exposed to albumin. We translated these findings to human disease by studying mRNA levels of these genes in the tubulo-interstitial compartment of kidney biopsies from patients with IgA nephropathy using microarrays. Biopsies from patients with IgAN (n = 25) could be distinguished from those of control subjects (n = 6) based solely upon the expression of these 231 “albumin-regulated genes.” The expression of an 11-transcript subset related to the degree of proteinuria, and this 11-mRNA subset was also sufficient to distinguish biopsies of subjects with IgAN from control biopsies. We tested if these findings could be extrapolated to other proteinuric diseases beyond IgAN and found that all forms of primary glomerulonephritis (n = 33) can be distinguished from controls (n = 21) based solely on the expression levels of these 11 genes derived from our in vitro proteinuria model. Pathway analysis suggests common regulatory elements shared by these 11 transcripts. In conclusion, we have identified an albumin-regulated 11-gene signature shared between all forms of primary glomerulonephritis. Our findings support the hypothesis that albuminuria may directly promote injury in the tubulo-interstitial compartment of the kidney in patients with glomerulonephritis
    corecore