8 research outputs found

    Field-Orientation Dependent Heat Capacity Measurements at Low Temperatures with a Vector Magnet System

    Get PDF
    We describe a heat capacity measurement system for the study of the field-orientation dependence for temperatures down to 50 mK. A "Vector Magnet" combined with a mechanical rotator for the dewar enables the rotation of the magnetic field without mechanical heating in the cryostat by friction. High reproducibility of the field direction, as well as an angular resolution of better than 0.01 degree, is obtained. This system is applicable to other kinds of measurements which require a large sample space or an adiabatic sample environment, and can also be used with multiple refrigerator inserts interchangeably.Comment: 7 pages, 8 figure

    Thermal conductivity of high- T c superconductors

    Full text link
    This paper reviews existing data on the thermal conductivity of high- T c superconductors. Included are discussions of pristine polycrystalline high- T c ceramics, single crystal specimens, and high- T c materials structurally modified by substitution or by radiation damage. The thermal conductivity of high- T c superconductors is compared with that of conventional superconductors, and dramatic differences are found between the two families. Mechanisms of thermal conductivity applicable to high- T c perovskites are discussed and implications for theories of high- T c superconductivity are noted.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/45121/1/10948_2004_Article_BF00617463.pd

    First results from the large dynamic range atomic force microscope for overlay metrology

    No full text
    \u3cp\u3eTNO is developing a novel Large Dynamic Range Atomic Force Microscope (LDR-AFM), primarily but not exclusively designed for sub-nm accurate overlay metrology. The LDR-AFM combines an AFM with a 6 degrees- of-freedom interferometric positioning stage, thereby enabling measurements of sub-nm features on a wafer over multiple millimeters marker-to-feature distances. The current work provides an overview of recent developments and presents the first results obtained after final integration of the complete system. This includes results on the AFM head development, the validated positioning stage performance, the first AFM images, and long-term stability measurements.\u3c/p\u3

    First results from the large dynamic range atomic force microscope for overlay metrology

    No full text
    TNO is developing a novel Large Dynamic Range Atomic Force Microscope (LDR-AFM), primarily but not exclusively designed for sub-nm accurate overlay metrology. The LDR-AFM combines an AFM with a 6 degrees- of-freedom interferometric positioning stage, thereby enabling measurements of sub-nm features on a wafer over multiple millimeters marker-to-feature distances. The current work provides an overview of recent developments and presents the first results obtained after final integration of the complete system. This includes results on the AFM head development, the validated positioning stage performance, the first AFM images, and long-term stability measurements

    89C9 - 92Z

    No full text
    corecore