37 research outputs found
Gravimeter search for compact dark matter objects moving in the Earth
Dark matter could be composed of compact dark objects (CDOs). These objects
may interact very weakly with normal matter and could move freely {\it inside}
the Earth. A CDO moving in the inner core of the Earth will have an orbital
period near 55 min and produce a time dependent signal in a gravimeter. Data
from superconducting gravimeters rule out such objects moving inside the Earth
unless their mass and or orbital radius are very small so that . Here and are
the mass and radius of the Earth.Comment: 8 pages, 7 figure
High-quality lowest-frequency normal mode strain observations at the Black Forest Observatory (SW-Germany) and comparison with horizontal broad-band seismometer data and synthetics
We present spectra concentrating on the lowest-frequency normal modes of the Earth obtained from records of the invar-wire strainmeters and STS-1 broad-band seismometers located in the Black Forest Observatory, Germany after the disastrous earthquakes off the NW coast of Sumatra in 2004 and off the coast near Tohoku, Japan in 2011. We compare the spectra to ones obtained from synthetic seismograms computed using a mode summation technique for an anelastic, elliptical, rotating, spherically symmetric Earth model. The synthetics include strainâstrain-coupling effects by using coupling coefficients obtained from comparisons between Earth tide signals recorded by the strainmeters and synthetic tidal records. We show that for the low-frequency toroidal and spheroidal modes up to 1 mHz, the strainmeters produce better signal-to-noise ratios than the broad-band horizontal seismometers. Overall, the comparison with the synthetics is satisfactory but not as good as for vertical accelerations. In particular, we demonstrate the high quality of the strainmeter data by showing the Coriolis splitting of toroidal modes for the first time in individual records, the first clear observation of the singlet 2S0/1 and the detection of the fundamental radial mode 0S0 with good signal-to-noise ratio and with a strain amplitude of 10^â11. We also identify the latter mode in a record of the Isabella strainmeter after the great Chilean quake in 1960, the detection of which was missed by the original studies
Constraining Martian Regolith and Vortex Parameters From Combined Seismic and Meteorological Measurements
The InSight mission landed on Mars in November 2018 and has since observed multiple convective vortices with both the high performance barometer and the low-noise seismometer SEIS that has unprecedented sensitivity. Here, we present a new method that uses the simultaneous pressure and seismic measurements of convective vortices to place constraints on the elastic properties of the Martian subsurface and the Martian vortex properties, while also allowing a reconstruction of the convective vortex trajectories. From data filtered in the (0.02â0.3 Hz) frequency band, we estimate that the mean value of η (η = E/[1 â Îœ2], where E is the Young's modulus and Îœ is the Poisson's ratio) of the Martian ground in the region around SEIS is 239 ± 140 MPa. In addition, we suggest that the previously reported paucity of vortex seismic observations to the west of InSight may be due to the fact that the ground is harder to the west than to the east, consistent with geomorphological surface interpretations
The interior of Mars as seen by InSight (Invited)
InSight is the first planetary mission dedicated to exploring the whole interior of a planet using geophysical methods, specifically seismology and geodesy. To this end, we observed seismic waves of distant marsquakes and inverted for interior models using differential travel times of phases reflected at the surface (PP, SS...) or the core mantle-boundary (ScS), as well as those converted at crustal interfaces. Compared to previous orbital observations1-3, the seismic data added decisive new insights with consequences for the formation of Mars: The global average crustal thickness of 24-75 km is at the low end of pre-mission estimates5. Together with the the thick lithosphere of 450-600 km5, this requires an enrichment of heat-producing elements in the crust by a factor of 13-20, compared to the primitive mantle. The iron-rich liquid core is 1790-1870 km in radius6, which rules out the existence of an insulating bridgmanite-dominated lower mantle on Mars. The large, and therefore low-density core needs a high amount of light elements. Given the geochemical boundary conditions, Sulfur alone cannot explain the estimated density of ~6 g/cm3 and volatile elements, such as oxygen, carbon or hydrogen are needed in significant amounts. This observation is difficult to reconcile with classical models of late formation from the same material as Earth. We also give an overview of open questions after three years of InSight operation on the surface of Mars, such as the potential existence of an inner core or compositional layers above the CM
Detection, analysis, and removal of glitches from InSight's seismic data from Mars
The instrument package SEIS (Seismic Experiment for Internal Structure) with the three very broadband and three shortâperiod seismic sensors is installed on the surface on Mars as part of NASA's InSight Discovery mission. When compared to terrestrial installations, SEIS is deployed in a very harsh wind and temperature environment that leads to inevitable degradation of the quality of the recorded data. One ubiquitous artifact in the raw data is an abundance of transient oneâsided pulses often accompanied by highâfrequency spikes. These pulses, which we term âglitchesâ, can be modeled as the response of the instrument to a step in acceleration, while the spikes can be modeled as the response to a simultaneous step in displacement. We attribute the glitches primarily to SEISâinternal stress relaxations caused by the large temperature variations to which the instrument is exposed during a Martian day. Only a small fraction of glitches correspond to a motion of the SEIS package as a whole caused by minuscule tilts of either the instrument or the ground. In this study, we focus on the analysis of the glitch+spike phenomenon and present how these signals can be automatically detected and removed from SEIS's raw data. As glitches affect many standard seismological analysis methods such as receiver functions, spectral decomposition and source inversions, we anticipate that studies of the Martian seismicity as well as studies of Mars' internal structure should benefit from deglitched seismic data.Centre National d'Etudes Spatiales (CNES)Swiss SpaceOffice (SSO)Agence Nationale de la RechercheDLR German Space AgencyInSight PSP progra
Constraints on the shallow elastic and anelastic structure of Mars from InSight seismic data
Marsâs seismic activity and noise have been monitored since January 2019 by the seismometer of the InSight (Interior Exploration using Seismic Investigations, Geodesy and Heat Transport) lander. At night, Mars is extremely quiet; seismic noise is about 500 times lower than Earthâs microseismic noise at periods between 4 s and 30 s. The recorded seismic noise increases during the day due to ground deformations induced by convective atmospheric vortices and ground-transferred wind-generated
lander noise. Here we constrain properties of the crust beneath InSight, using signals from atmospheric vortices and from the
hammering of InSightâs Heat Flow and Physical Properties (HP3) instrument, as well as the three largest Marsquakes detected
as of September 2019. From receiver function analysis, we infer that the uppermost 8â11 km of the crust is highly altered and/
or fractured. We measure the crustal diffusivity and intrinsic attenuation using multiscattering analysis and find that seismic
attenuation is about three times larger than on the Moon, which suggests that the crust contains small amounts of volatiles
SEIS: Insightâs Seismic Experiment for Internal Structure of Mars
By the end of 2018, 42 years after the landing of the two Viking seismometers
on Mars, InSight will deploy onto Marsâ surface the SEIS (Seismic Experiment for Internal
Structure) instrument; a six-axes seismometer equipped with both a long-period three-axes
Very Broad Band (VBB) instrument and a three-axes short-period (SP) instrument. These
six sensors will cover a broad range of the seismic bandwidth, from 0.01 Hz to 50 Hz,
with possible extension to longer periods. Data will be transmitted in the form of three
continuous VBB components at 2 sample per second (sps), an estimation of the short period
energy content from the SP at 1 sps and a continuous compound VBB/SP vertical axis at
10 sps. The continuous streams will be augmented by requested event data with sample
rates from 20 to 100 sps. SEIS will improve upon the existing resolution of Vikingâs Mars
seismic monitoring by a factor of ⌠2500 at 1 Hz and ⌠200 000 at 0.1 Hz. An additional
major improvement is that, contrary to Viking, the seismometers will be deployed via a
robotic arm directly onto Marsâ surface and will be protected against temperature and wind
by highly efficient thermal and wind shielding. Based on existing knowledge of Mars, it is
reasonable to infer a moment magnitude detection threshold of Mw ⌠3 at 40⊠epicentral
distance and a potential to detect several tens of quakes and about five impacts per year. In
this paper, we first describe the science goals of the experiment and the rationale used to
define its requirements. We then provide a detailed description of the hardware, from the
sensors to the deployment system and associated performance, including transfer functions
of the seismic sensors and temperature sensors. We conclude by describing the experiment
ground segment, including data processing services, outreach and education networks and
provide a description of the format to be used for future data distribution