32 research outputs found
Acoustic positioning for space processing experiments
An acoustic positioning system is described that is adaptable to a range of processing chambers and furnace systems. Operation at temperatures exceeding 1000 C is demonstrated in experiments involving the levitation of liquid and solid glass materials up to several ounces in weight. The system consists of a single source of sound that is beamed at a reflecting surface placed a distance away. Stable levitation is achieved at a succession of discrete energy minima contained throughout the volume between the reflector and the sound source. Several specimens can be handled at one time. Metal discs up to 3 inches in diameter can be levitated, solid spheres of dense material up to 0.75 inches diameter, and liquids can be freely suspended in l-g in the form of near-spherical droplets up to 0.25 inch diameter, or flattened liquid discs up to 0.6 inches diameter. Larger specimens may be handled by increasing the size of the sound source or by reducing the sound frequency
Levitation of objects using acoustic energy
Activated sound source establishes standing-wave pattern in gap between source and acoustic reflector. Solid or liquid material introduced in region will move to one of the low pressure areas produced at antinodes and remain suspended as long as acoustic signal is present
Postflight analysis of the single-axis acoustic system on SPAR VI and recommendations for future flights
The single axis acoustic levitator that was flown on SPAR VI malfunctioned. The results of a series of tests, analyses, and investigation of hypotheses that were undertaken to determine the probable cause of failure are presented, together with recommendations for future flights of the apparatus. The most probable causes of the SPAR VI failure were lower than expected sound intensity due to mechanical degradation of the sound source, and an unexpected external force that caused the experiment sample to move radially and eventually be lost from the acoustic energy well
Local and exotic sources of sarsen debitage at Stonehenge revealed by geochemical provenancing
The application of novel geochemical provenancing techniques has changed our understanding of the construction of Stonehenge, by identifying West Woods on the Marlborough Downs as the likely source area for the majority of the extant sarsen megaliths at the monument. In this study, we apply the same techniques to saccharoid sarsen fragments from three excavations within and outwith the main Sarsen Circle to expand our understanding of the provenance of sarsen debitage present at the monument. Through pXRF analysis, we demonstrate that the surface geochemistry of 1,028 excavated sarsen fragments is significantly affected by subsurface weathering following burial in a way that cannot be overcome by simple cleaning. However, we show that this effect is surficial and does not have a volumetrically significant impact, thus permitting the subsequent use of whole-rock analytical methods. Comparison of ICP-AES and ICP-MS trace element data from 54 representative sarsen fragments with equivalent data from Stone 58 at Stonehenge demonstrates that none are debitage produced during the dressing of this megalith or its 49 chemical equivalents at the monument. Further inspection of the ICP-MS data reveals that 22 of these fragments fall into three distinct geochemical âfamiliesâ. None of these families overlap with the geochemical signature of Stone 58 and its chemical equivalents, implying that sarsen imported from at least a further three locations (in addition to West Woods) is present at Stonehenge.
Comparison of immobile trace element signatures from the 54 excavated sarsen fragments against equivalent data for 20 sarsen outcrop areas across southern Britain shows that 15 of the fragments can be linked to specific localities. Eleven of these were likely sourced from Monkton Down, Totterdown Wood and West Woods on the Marlborough Downs (25â33 km north of Stonehenge). Three fragments likely came from Bramdean, Hampshire (51 km southeast of Stonehenge), and one from Stoney Wish, East Sussex (123 km to the southeast). Technological analysis and refitting shows that one of the fragments sourced from Monkton Down was part of a 25.7 cm Ă 17.9 cm flake removed from the outer surface of a large sarsen boulder, most probably during on-site dressing. This adds a second likely source area for the sarsen megaliths at Stonehenge in addition to West Woods. At this stage, we can only speculate on why sarsen from such diverse sources is present at Stonehenge. We do not know whether the fragments analysed by ICP-MS were removed from (i) the outer surface of Stones 26 or 160 (which are chemically distinct to the other extant sarsen megaliths), (ii) one of the c.28 sarsen megaliths and lintels from the c.60 erected during Stage 2 of the construction of Stonehenge that may now be missing from the monument, or (iii) one of the dismantled and destroyed sarsen megaliths associated with Stage 1 of the monument. With the exception of the fragment sourced from Monkton Down, it is also possible that the analysed fragments were (iv) pieces of saccharoid sarsen hammerstones or their pre-forms, or (v) small blocks brought on-site for ceremonial or non-ceremonial purposes
Local and exotic sources of sarsen debitage at Stonehenge revealed by geochemical provenancing
The application of novel geochemical provenancing techniques has changed our understanding of the construction of Stonehenge, by identifying West Woods on the Marlborough Downs as the likely source area for the majority of the extant sarsen megaliths at the monument. In this study, we apply the same techniques to saccharoid sarsen fragments from three excavations within and outwith the main Sarsen Circle to expand our understanding of the provenance of sarsen debitage present at the monument. Through pXRF analysis, we demonstrate that the surface geochemistry of 1,028 excavated sarsen fragments is significantly affected by subsurface weathering following burial in a way that cannot be overcome by simple cleaning. However, we show that this effect is surficial and does not have a volumetrically significant impact, thus permitting the subsequent use of whole-rock analytical methods. Comparison of ICP-AES and ICP-MS trace element data from 54 representative sarsen fragments with equivalent data from Stone 58 at Stonehenge demonstrates that none are debitage produced during the dressing of this megalith or its 49 chemical equivalents at the monument. Further inspection of the ICP-MS data reveals that 22 of these fragments fall into three distinct geochemical âfamiliesâ. None of these families overlap with the geochemical signature of Stone 58 and its chemical equivalents, implying that sarsen imported from at least a further three locations (in addition to West Woods) is present at Stonehenge. Comparison of immobile trace element signatures from the 54 excavated sarsen fragments against equivalent data for 20 sarsen outcrop areas across southern Britain shows that 15 of the fragments can be linked to specific localities. Eleven of these were likely sourced from Monkton Down, Totterdown Wood and West Woods on the Marlborough Downs (25â33 km north of Stonehenge). Three fragments likely came from Bramdean, Hampshire (51 km southeast of Stonehenge), and one from Stoney Wish, East Sussex (123 km to the southeast). Technological analysis and refitting shows that one of the fragments sourced from Monkton Down was part of a 25.7 cm Ă 17.9 cm flake removed from the outer surface of a large sarsen boulder, most probably during on-site dressing. This adds a second likely source area for the sarsen megaliths at Stonehenge in addition to West Woods. At this stage, we can only speculate on why sarsen from such diverse sources is present at Stonehenge. We do not know whether the fragments analysed by ICP-MS were removed from (i) the outer surface of Stones 26 or 160 (which are chemically distinct to the other extant sarsen megaliths), (ii) one of the c.28 sarsen megaliths and lintels from the c.60 erected during Stage 2 of the construction of Stonehenge that may now be missing from the monument, or (iii) one of the dismantled and destroyed sarsen megaliths associated with Stage 1 of the monument. With the exception of the fragment sourced from Monkton Down, it is also possible that the analysed fragments were (iv) pieces of saccharoid sarsen hammerstones or their pre-forms, or (v) small blocks brought on-site for ceremonial or non-ceremonial purposes
Acoustic journal bearing â a search for adequate configuration
Classical non-contact bearings are already used in a number of specialist applications but there are some specialist areas where they cannot be used for variety of reasons and acoustic sliding bearings could be an alternative. The paper presents the quest for a configuration of an acoustic journal bearing and shows that the overall shape of the bearing and its geometry are of a vital importance for the load capacity of the bearing. The results clearly demonstrate that the acoustic journal bearing with appropriate geometry can develop a load capacity of magnitude that can be sufficient for some practical applications. The search for the appropriate configuration was carried out using finite element modelling and experimental validating testing.Grant from the National Centre of Science, Poland (grant no.: 2012/07/B/ST8/03683)
Hemoglobin Promotes Staphylococcus aureus Nasal Colonization
Staphylococcus aureus nasal colonization is an important risk factor for community and nosocomial infection. Despite the importance of S. aureus to human health, molecular mechanisms and host factors influencing nasal colonization are not well understood. To identify host factors contributing to nasal colonization, we collected human nasal secretions and analyzed their ability to promote S. aureus surface colonization. Some individuals produced secretions possessing the ability to significantly promote S. aureus surface colonization. Nasal secretions pretreated with protease no longer promoted S. aureus surface colonization, suggesting the involvement of protein factors. The major protein components of secretions were identified and subsequent analysis revealed that hemoglobin possessed the ability to promote S. aureus surface colonization. Immunoprecipitation of hemoglobin from nasal secretions resulted in reduced S. aureus surface colonization. Furthermore, exogenously added hemoglobin significantly decreased the inoculum necessary for nasal colonization in a rodent model. Finally, we found that hemoglobin prevented expression of the agr quorum sensing system and that aberrant constitutive expression of the agr effector molecule, RNAIII, resulted in reduced nasal colonization of S. aureus. Collectively our results suggest that the presence of hemoglobin in nasal secretions contributes to S. aureus nasal colonization
Great Britain: the intertidal and underwater archaeology of Britainâs submerged landscapes
The submerged landscapes around Great Britain are extensive and would have offered productive territory for hunting, gathering, exploitation of aquatic and marine resources, andâin the final stages of postglacial sea-level riseâopportunities for agriculture. They would also have provided land connections to continental Europe and opportunities for communication by sea travel along now-submerged palaeocoastlines and river estuaries. Most of the archaeological material has been discovered in intertidal or shallow water conditions, but there are also discoveries in deeper water, with dates ranging from earliest human presence nearly one million years ago up to the establishment of modern sea level. Some later material is present where coastlines have continued to sink in more recent millennia. Intertidal sites are especially well represented because of relatively large tidal ranges and shallow offshore gradients on many coastlines. These are often associated with remains of submerged forests, which are periodically exposed at low tide and then covered up again by movements of sand. Some of the most distinctive intertidal finds are the human and animal footprints preserved in intertidal sediments in many locations, especially at Goldcliff East. The earliest, at Happisburgh, are dated between 0.78 and 1 Ma. Fully submerged sites include the Mesolithic site of Bouldnor Cliff with its worked timbers, and the Middle Stone Age artefacts from offshore aggregate Area 240 along with well-preserved ice age fauna and environmental indicators. Pioneering work using oil industry seismic records has produced detailed reconstructions of the submerged landscape, and this is being followed up by new work involving targeted acoustic survey and coring of sediments
Modeling the Past: The Paleoethnological Evidence
This chapter considers the earliest Paleolithic, Oldowan (Mode 1), and Acheulean (Mode 2)
cultures of the Old Continent and the traces left by the earliest hominids since their departure
from Africa. According to the most recent archaeological data, they seem to have followed two
main dispersal routes across the Arabian Peninsula toward the Levant, to the north, and the Indian
subcontinent, to the east. According to recent discoveries at Dmanisi in the Caucasus, the first
Paleolithic settlement of Europe is dated to some 1.75 Myr ago, which indicates that the first âout of
Africaâ took place at least slightly before this date. The data available for Western Europe show
that the first Paleolithic sites can be attributed to the period slightly before 1.0 Myr ago. The first
well-defined âstructural remainsâ so far discovered in Europe are those of Isernia La Pineta in
Southern Italy, where a semicircular artificial platform made of stone boulders and animal bones
has been excavated. The first hand-thrown hunting weapons come from the site of Scho¨ningen in
north Germany, where the first occurrence of wooden spears, more than 2 m long, has been
recorded from a site attributed to some 0.37 Myr ago. Slightly later began the regular control of
fire. Although most of the archaeological finds of these ages consist of chipped stone artifacts,
indications of art seem to be already present in the Acheulean of Africa and the Indian
subcontinent
Adaptation of technology into an informal collaborative environment
The adaptation process for new technology into small teams is not yet well understood. New technologies to be introduced to an inter-organisational collaborative design team, presents an opportunity to study adaptive structuration theory in the field. This paper focuses on a future research opportunity, using the implementation of new groupware technology as a framework to investigate the adaptive structuration model. The study of the design team is useful for extending our understanding of the adaptation process in a collaborative environment