1,177 research outputs found
Scaling study of Si and strained Si n-MOSFETs with different high-k gate stacks
Using ensemble Monte Carlo device simulations, this paper studies the impact of interface roughness and soft-optical phonon scattering on the performance of sub-100nm Si and strained Si MOSFETs with different high-k gate stacks. Devices with gate lengths down to 25nm have been investigated
Redescription of Hyalella Azteca from Its Type Locality, Vera Cruz, Mexico (Amphipoda : Hyalellidae)
Hyalella azteca is a species complex distributed in North, Central, and northern South America. The identity of the species has always been a problem, especially because the original description by Saussure (1858) from a cistern in Vera Cruz, Mexico, is poor, and the figures are not clear. Since then, mention of the type material or specimens from the type locality has not been made by investigators using the name H. azteca. Ecological and genetic information available today suggests that there are several species in the complex commonly referred to as H. azteca. The subtle morphological differences among the populations have made the problem of defining these species very complicated. To aid in this process, we present here the morphological description of H. azteca based on the syntype series established by Saussure and deposited in the Museum d\u27Histoire Naturelle, Ville de Geneve, Switzerland
Prediction of Benthic Impact for Salmon Net-Pens Based on the Balance of Benthic Oxygen Supply and Demand
The ratio between oxygen supply and oxygen demand was examined as a predictor of benthic response to organic enrichment caused by salmon net-pen aquaculture. Oxygen supply to the benthos was calculated based on Fickian diffusion and near-bottom flow velocities. A strong linear correlation was found between measured carbon sedimentation rates and rates of benthic metabolism. This relationship allowed an estimation of oxygen demand based on sedimentation rates. Comparison of several production sites in Maine (USA) coastal waters showed that for sites where oxygen demand exceeded supply benthic impacts were high and for sites where oxygen supply exceeded demand benthic impacts were low. These findings were summarized in the form of a predictive model that should be useful in siting salmon production facilities
Sensitivity analysis of optimal routes, departure times and speeds for fuel-efficient truck journeys
Embedded within the vehicle "routing" problem of determining the order in which customers are served, is the route choice problem of which sequence of roads to use between a pair of pick-up/drop-off locations, and this latter is the focus of the paper. When the objective is something other than travel time, such as fuel consumption, an additional control dimension is that of speed, and in a time-varying context the question of optimal speed determination is no longer a local one, due to potential downstream interactions. This also brings in the possibility to adjust departure times. Recently this problem, of joint route, departure time and speed determination for fuel minimization in a time-varying network, was shown to be efficiently solvable using a Space-Time Extended Network (STEN). In the present paper, we explore the sensitivity of the optimal solutions produced to: i) the fidelity of the within-day traffic information; ii) the currency of between-day traffic information in comparison with historical mean conditions; iii) the availability of historical information on variability for risk-averse routing; and iv) competition from other equally-optimal or near equally-optimal solutions. We set out the methods by which each of these tests may be achieved by adaptation of the underlying STEN, taking care to ensure a consistent reference basis, and describe the potential real-life relevance of each test. The results of illustrative numerical experiments are reported from interfacing the methods with real-time data accessed through the Google Maps API
Cladorhiza corona sp. nov. (Porifera : Demospongiae : Cladorhizidae) from the Aleutian Islands (Alaska)
A new species of Cladorhizidac, front the Aleutian Islands is described and compared with all known species of Cladorhizza worldwide. Cladorhiza corona sp. now has a unique growth form with two planes of differently shaped appendages. Appendages are Inserted directly at the stalk; a spherical or conical body at the stalk is lacking. It is the only species reported where different spicule types occur in three morphologically different areas of the sponge. The spiculation of the basal plate is characterized by the occurrence of short, thick anisoxcas and the lack of anisochelae. Anisochelac arc found in the stalk and the basal appendages only. Flattened sigmancistras and (sub-)tylostyles are restricted to the crown. The arrangement of spicules is different in the basal plate, the stalk with the basal appendages, and in the distal append ages. The dimensions and combination of spicule types separate C. corona sp. nov. from all known members of the genus
Optimizations of sub-100 nm Si/SiGe MODFETs for high linearity RF applications
Based on careful calibration in respect of 70 nm n-type strained Si channel S/SiGe modulation doped FETs (MODFETs) fabricated by Daimler Chrysler, numerical simulations have been used to study the impact of the device geometry and various doping strategies on device performance and linearity. The device geometry is sensitive to both RF performance and device linearity. Doped channel devices are found to be promising for high linearity applications. Trade-off design strategies are required for reconciling the demands of high device performance and high linearity simultaneously. The simulations also suggest that gate length scaling helps to achieve higher RF performance, but decreases the linearity
The Place of the Hoplocarida in the Malacostracan Pantheon
The stomatopod body plan is highly specialized for predation, yet the Superorder Hoplocarida originated from something other than the lean, mean, killing machine seen today. The fossil record of the group indicates that it originated early on from a non-raptorial ancestor, with the specialized predatory morphology developing much later. The Recent Hoplocarida have been variously positioned within the Malacostraca, from a Subclass equal in rank to the Eumalacostraca (= Caridoida) to being placed as a Superorder within the Eumalacostraca. Consideration of the early fossil morphology, especially of the form of the carapace, of the position and functioning of the articles in the last three pairs of thoracopods, and of other features, suggests that hoplocarids are early derivatives of a basal eumalacostracan stock that was shrimp-like in form. The enhancement of an abdominal respiratory system most likely allowed the development of the anterior thorax into the specialized raptorial system present today
Modeling Evacuation Risk Using a Stochastic Process Formulation of Mesoscopic Dynamic Network Loading
One of the actions usually conducted to limit exposure to a hazardous event is the evacuation of the area that is subject to the effects of the event itself. This involves modifications both to demand (a large number of users all want to move together) and to supply (the transport network may experience changes in capacity, unusable roads, etc.). In order to forecast the traffic evolution in a network during an evacuation, a natural choice is to adopt an approach based on Dynamic Traffic Assignment (DTA) models. However, such models typically give a deterministic prediction of future conditions, whereas evacuations are subject to considerable uncertainty. The aim of the present paper is to describe an evacuation approach for decision support during emergencies that directly predicts the time-evolution of the probability of evacuating users from an area, formulated within a discrete-time stochastic process modelling framework. The approach is applied to a small artificial case as well as a real-life network, where we estimate users' probabilities to reach a desired safe destination and analyze time dependent risk factors in an evacuation scenario
Optimization of route choice, speeds and stops in time-varying networks for fuel-efficient truck journeys
A method is presented for the real-time optimal control of the journey of a truck, travelling between a pair of pick-up/drop-off locations in a time-varying traffic network, in order to reduce fuel consumption. The method, when applied during the journey, encapsulates the choice of route, choice of speeds on the links, and choice of stop locations/durations; when applied pre-trip, it additionally incorporates choice of departure time. The problem is formulated by using a modified form of space-time extended network, in such a way that a shortest path in this network corresponds to an optimal choice of not only route, stops and (when relevant) departure time, but also of speeds. A series of simple illustrative examples are presented to illustrate the formulation. Finally, the method is applied to a realistic-size case study
- âŠ