Motivated by experiments performed in superfluid helium, we study numerically
the motion of toroidal bundles of vortex filaments in an inviscid fluid. We
find that the evolution of these large-scale vortex structures involves the
generalised leapfrogging of the constituent vortex rings. Despite three
dimensional perturbations in the form of Kelvin waves and vortex reconnections,
toroidal vortex bundles retain their coherence over a relatively large distance
(compared to their size), in agreement with experimental observations.Comment: 22 pages, 12 figure
Contains reports on six research projects.National Institutes of Health (Grant 5 PO1 GM14940-04)National Institutes of Health (Grant 5 PO1 GM15006-03)Joint Services Electronics Programs (U. S. Army, U. S. Navy, and U. S. Air Force) under Contract DA 28-043-AMC-02536(E