3,177 research outputs found
Theory for the optimal control of time-averaged quantities in open quantum systems
We present variational theory for optimal control over a finite time interval
in quantum systems with relaxation. The corresponding Euler-Lagrange equations
determining the optimal control field are derived. In our theory the optimal
control field fulfills a high order differential equation, which we solve
analytically for some limiting cases. We determine quantitatively how
relaxation effects limit the control of the system. The theory is applied to
open two level quantum systems. An approximate analytical solution for the
level occupations in terms of the applied fields is presented. Different other
applications are discussed
Photo-Induced Coupled Nuclear and Electron Dynamics in the Nucleobase Uracil
Photo-initiated processes in molecules often involve complex situations where the induced dynamics is characterized by the interplay of nuclear and electronic degrees of freedom. The interaction of the molecule with an ultrashort laser pulse or the coupling at a conical intersection (CoIn) induces coherent electron dynamics which is subsequently modified by the nuclear motion. The nuclear dynamics typically leads to a fast electronic decoherence but also, depending on the system, enables the reappearance of the coherent electron dynamics. We study this situation for the photo-induced nuclear and electron dynamics in the nucleobase uracil. The simulations are performed with our ansatz for the coupled description of the nuclear and electron dynamics in molecular systems (NEMol). After photo-excitation uracil exhibits an ultrafast relaxation mechanism mediated by CoIn's. Both processes, the excitation by a laser pulse and the non-adiabatic relaxation, are explicitly simulated and the coherent electron dynamics is monitored using our quantum mechanical NEMol approach. The electronic coherence induced by the CoIn is observable for a long time scale due to the delocalized nature of the nuclear wavepacket
Attosecond control of electron dynamics in carbon monoxide
Laser pulses with stable electric field waveforms establish the opportunity
to achieve coherent control on attosecond timescales. We present experimental
and theoretical results on the steering of electronic motion in a
multi-electron system. A very high degree of light-waveform control over the
directional emission of C+ and O+ fragments from the dissociative ionization of
CO was observed. Ab initio based model calculations reveal contributions to the
control related to the ionization and laser-induced population transfer between
excited electronic states of CO+ during dissociation
Steering proton migration in hydrocarbons using intense few-cycle laser fields
Proton migration is a ubiquitous process in chemical reactions related to
biology, combustion, and catalysis. Thus, the ability to control the movement
of nuclei with tailored light, within a hydrocarbon molecule holds promise for
far-reaching applications. Here, we demonstrate the steering of hydrogen
migration in simple hydrocarbons, namely acetylene and allene, using
waveform-controlled, few-cycle laser pulses. The rearrangement dynamics are
monitored using coincident 3D momentum imaging spectroscopy, and described with
a quantum-dynamical model. Our observations reveal that the underlying control
mechanism is due to the manipulation of the phases in a vibrational wavepacket
by the intense off-resonant laser field.Comment: 5 pages, 4 figure
Fluorescence kinetics of flavin adenine dinucleotide in different microenvironments
Fluorescence kinetics of flavin adenine dinucleotide was measured in a wide time and spectral range in different media, affecting its intra- end extramolecular interactions, and analyzed by a new method based on compressed sensing
Adaptive strong-field control of chemical dynamics guided by three-dimensional momentum imaging.
Shaping ultrafast laser pulses using adaptive feedback can manipulate dynamics in molecular systems, but extracting information from the optimized pulse remains difficult. Experimental time constraints often limit feedback to a single observable, complicating efforts to decipher the underlying mechanisms and parameterize the search process. Here we show, using two strong-field examples, that by rapidly inverting velocity map images of ions to recover the three-dimensional photofragment momentum distribution and incorporating that feedback into the control loop, the specificity of the control objective is markedly increased. First, the complex angular distribution of fragment ions from the nω+C2D4→C2D3++D interaction is manipulated. Second, isomerization of acetylene (nω+C2H2→C2H22+→CH2++C+) is controlled via a barrier-suppression mechanism, a result that is validated by model calculations. Collectively, these experiments comprise a significant advance towards the fundamental goal of actively guiding population to a specified quantum state of a molecule
- …