6,697 research outputs found

    Coupling the solar surface and the corona: coronal rotation, Alfv\'en wave-driven polar plumes

    Full text link
    The dynamical response of the solar corona to surface and sub-surface perturbations depends on the chromospheric stratification, and specifically on how efficiently these layers reflect or transmit incoming Alfv\'en waves. While it would be desirable to include the chromospheric layers in the numerical simulations used to study such phenomena, that is most often not feasible. We defined and tested a simple approximation allowing the study of coronal phenomena while taking into account a parametrised chromospheric reflectivity. We addressed the problems of the transmission of the surface rotation to the corona and that of the generation of polar plumes by Alfv\'en waves (Pinto et al., 2010, 2011). We found that a high (yet partial) effective chromospheric reflectivity is required to properly describe the angular momentum balance in the corona and the way the surface differential rotation is transmitted upwards. Alfv\'en wave-driven polar plumes maintain their properties for a wide range of values for the reflectivity, but they become bursty (and eventually disrupt) when the limit of total reflection is attained.Comment: Solar Wind 13: Proceedings of the Thirteenth International Solar Wind Conferenc

    Quantum size effects in the low temperature layer-by-layer growth of Pb on Ge(001)

    Full text link
    The electronic properties of thin metallic films deviate from the corresponding bulk ones when the film thickness is comparable with the wavelength of the electrons at the Fermi level due to quantum size effects (QSE). QSE are expected to affect the film morphology and structure leading to the low temperature (LT) ``electronic growth'' of metals on semiconductors. In particular, layer-by-layer growth of Pb(111) films has been reported for deposition on Ge(001) below 130 K. An extremely flat morphology is preserved throughout deposition from four up to a dozen of monolayers. These flat films are shown to be metastable and to reorganize into large clusters uncovering the first Pb layer, pseudomorphic to the substrate, already at room temperature. Indications of QSE induced structural variations of the growing films have been reported for Pb growth on Ge(001), where the apparent height of the Pb(111) monatomic step was shown to change in an oscillatory fashion by He atom scattering (HAS) during layer-by-layer growth. The extent of the structural QSE has been obtained by a comparison of the HAS data with X-ray diffraction (XRD) and reflectivity experiments. Whereas step height variations as large as 20 % have been measured by HAS reflectivity, the displacement of the atomic planes from their bulk position, as measured by XRD, has been found to mainly affect the topmost Pb layer, but with a lower extent, i.e. the QSE observed by HAS are mainly due to a perpendicular displacement of the topmost layer charge density. The effect of the variable surface relaxation on the surface vibration has been studied by inelastic HAS to measure the acoustic dispersion of the low energy phonons.Comment: 28 pages (laTex,elsart) and 13 figures (eps); updated reference

    Study of the isotropic contribution to the analysis of photoelectron diffraction experiments at the ALOISA beamline

    Full text link
    The angular distribution of the intensity in photoemission experiments is affected by electron diffraction patterns and by a smoothly varying ISO contribution originated by both intrumental details and physical properties of the samples. The origin of the various contributions to the ISO component has been identified since many years. Nonetheless in this work we present original developement of the ED analysis, which arises from the evolution of instrumental performance, in terms of analyzers positioning and angular resolution, as well as collimation and size of X-ray beams in third generation synchrotron sources. The analytical treatement of the instrumental factors is presented in detail for the end station of the ALOISA beamline (Trieste Synchrotron), where a wide variety of scattering geometries is available for ED experiments. We present here the basic formulae and their application to experimental data taken on the Fe/Cu3Au(001) system in order to highlight the role of the various parameters included in the distribution function. A specific model for the surface illumination has been developed as well as the overlayer thickness and surface roughness have been considered.Comment: RevTex, nine pages with five eps figures; to be published in J. Electron Spectrosc. Relat. Pheno

    Coronal heating in coupled photosphere-chromosphere-coronal systems: turbulence and leakage

    Get PDF
    Coronal loops act as resonant cavities for low frequency fluctuations that are transmitted from the deeper layers of the solar atmosphere and are amplified in the corona, triggering nonlinear interactions. However trapping is not perfect, some energy leaks down to the chromosphere, thus limiting the turbulence development and the associated heating. We consider the combined effects of turbulence and leakage in determining the energy level and associated heating rate in models of coronal loops which include the chromosphere and transition region. We use a piece-wise constant model for the Alfven speed and a Reduced MHD - Shell model to describe the interplay between turbulent dynamics in the direction perpendicular to the mean field and propagation along the field. Turbulence is sustained by incoming fluctuations which are equivalent, in the line-tied case, to forcing by the photospheric shear flows. While varying the turbulence strength, we compare systematically the average coronal energy level (E) and dissipation rate (D) in three models with increasing complexity: the classical closed model, the semi-open corona model, and the corona-chromosphere (or 3-layer) model, the latter two models allowing energy leakage. We find that: (i) Leakage always plays a role (even for strong turbulence), E and D are systematically lower than in the line-tied model. (ii) E is close to the resonant prediction, i.e., assuming effective turbulent correlation time longer than the Alfven coronal crossing time (Ta). (iii) D is close to the value given by the ratio of photospheric energy divided by Ta (iv) The coronal spectra exibits an inertial range with 5/3 spectral slope, and a large scale peak of trapped resonant modes that inhibit nonlinear couplings. (v) In the realistic 3-layer model, the two-component spectrum leads to a damping time equal to the Kolmogorov time reduced by a factor u_rms/Va_coronaComment: 15 pages, 15 figures, Accepted for publication in A&

    Turbulent Heating between 0.2 and 1 au: A Numerical Study

    Get PDF
    International audience; The heating of the solar wind is key to understanding its dynamics and acceleration process. The observed radial decrease of the proton temperature in the solar wind is slow compared to the adiabatic prediction, and it is thought to be caused by turbulent dissipation. To generate the observed 1/ R decrease, the dissipation rate has to reach a specific level that varies in turn with temperature, wind speed, and heliocentric distance. We want to prove that MHD turbulent simulations can lead to the 1/ R profile. We consider here the slow solar wind, characterized by a quasi-2D spectral anisotropy. We use the expanding box model equations, which incorporate into 3D MHD equations the expansion due to the mean radial wind, allowing us to follow the plasma evolution between 0.2 and 1 au. We vary the initial parameters: Mach number, expansion parameter, plasma ? , and properties of the energy spectrum as the spectral range and slope. Assuming turbulence starts at 0.2 au with a Mach number equal to unity, with a 3D spectrum mainly perpendicular to the mean field, we find radial temperature profiles close to 1/ R on average. This is done at the price of limiting the initial spectral extent, corresponding to the small number of modes in the inertial range available, due to the modest Reynolds number reachable with high Mach numbers

    Surface Alfven Wave Damping in a 3D Simulation of the Solar Wind

    Full text link
    Here we investigate the contribution of surface Alfven wave damping to the heating of the solar wind in minima conditions. These waves are present in regions of strong inhomogeneities in density or magnetic field (e. g., the border between open and closed magnetic field lines). Using a 3-dimensional Magnetohydrodynamics (MHD) model, we calculate the surface Alfven wave damping contribution between 1-4 solar radii, the region of interest for both acceleration and coronal heating. We consider waves with frequencies lower than those that are damped in the chromosphere and on the order of those dominating the heliosphere. In the region between open and closed field lines, within a few solar radii of the surface, no other major source of damping has been suggested for the low frequency waves we consider here. This work is the first to study surface Alfven waves in a 3D environment without assuming a priori a geometry of field lines or magnetic and density profiles. We determine that waves with frequencies >2.8x10^-4 Hz are damped between 1-4 solar radii. In quiet sun regions, surface Alfven waves are damped at further distances compared to active regions, thus carrying additional wave energy into the corona. We compare the surface Alfven wave contribution to the heating by a variable polytropic index and find that it an order of magnitude larger than needed for quiet sun regions. For active regions the contribution to the heating is twenty percent. As it has been argued that a variable gamma acts as turbulence, our results indicate that surface Alfven wave damping is comparable to turbulence in the lower corona. This damping mechanism should be included self consistently as an energy driver for the wind in global MHD models.Comment: Accepted to ApJ (scheduled September '09), 22 pages, 8 figure

    Three-dimensional local anisotropy of velocity fluctuations in the solar wind

    Get PDF
    We analyse velocity fluctuations in the solar wind at magneto-fluid scales in two datasets, extracted from Wind data in the period 2005-2015, that are characterised by strong or weak expansion. Expansion affects measurements of anisotropy because it breaks axisymmetry around the mean magnetic field. Indeed, the small-scale three-dimensional local anisotropy of magnetic fluctuations ({\delta}B) as measured by structure functions (SF_B) is consistent with tube-like structures for strong expansion. When passing to weak expansion, structures become ribbon-like because of the flattening of SFB along one of the two perpendicular directions. The power-law index that is consistent with a spectral slope -5/3 for strong expansion now becomes closer to -3/2. This index is also characteristic of velocity fluctuations in the solar wind. We study velocity fluctuations ({\delta}V) to understand if the anisotropy of their structure functions (SF_V ) also changes with the strength of expansion and if the difference with the magnetic spectral index is washed out once anisotropy is accounted for. We find that SF_V is generally flatter than SF_B. When expansion passes from strong to weak, a further flattening of the perpendicular SF_V occurs and the small-scale anisotropy switches from tube-like to ribbon-like structures. These two types of anisotropy, common to SF_V and SF_B, are associated to distinct large-scale variance anisotropies of {\delta}B in the strong- and weak-expansion datasets. We conclude that SF_V shows anisotropic three-dimensional scaling similar to SF_B, with however systematic flatter scalings, reflecting the difference between global spectral slopes.Comment: accepted in MNRA

    Investigating the Origin of the First Ionization Potential Effect With a Shell Turbulence Model

    Get PDF
    International audienceThe enrichment of coronal loops and the slow solar wind with elements that have low First Ionization Potential, known as the FIP effect, has often been interpreted as the tracer of a common origin. A current explanation for this FIP fractionation rests on the influence of ponderomotive forces and turbulent mixing acting at the top of the chromosphere. The implied wave transport and turbulence mechanisms are also key to wave-driven coronal heating and solar wind acceleration models. This work makes use of a shell turbulence model run on open and closed magnetic field lines of the solar corona to investigate with a unified approach the influence of magnetic topology, turbulence amplitude and dissipation on the FIP fractionation. We try in particular to assess whether there is a clear distinction between the FIP effect on closed and open field regions

    Design and Studies of Ό-strip Stacked Module Prototypes for Tracking at Super-LHC

    Get PDF
    AbstractExperience at high luminosity hadrons collider experiments shows that tracking information enhances the trigger rejection capabilities while retaining high efficiency for interesting physics events. The design of a tracking based trigger for Super LHC (S-LHC), the already envisaged high luminosity upgrade of the LHC collider, is an extremely challenging task, and requires the identiïŹcation of high-momentum particle tracks as a part of the Level 1 Trigger.Simulation studies show that this can be achieved by correlating hits on two closely spaced silicon strip sensors. The progresses on the design and development of this micro-strip stacked prototype modules and the performance of few prototype detectors will be presented. The prototypes have been built with the silicon sensors and electronics used to equip the present CMS[1] Tracker.Preliminary results of a simulated tracker layout equipped with stacked modules are discussed in terms of pT resolution and triggering capabilities.The study of real prototypes in terms of signal over noise and tracking performance with cosmic rays and a dedicated beam test experiment will also be shown

    Picosecond timescale tracking of pentacene triplet excitons with chemical sensitivity

    Get PDF
    Singlet fission is a photophysical process in which an optically excited singlet exciton is converted into two triplet excitons. Singlet fission sensitized solar cells are expected to display a greatly enhanced power conversion efficiency compared to conventional singlejunction cells, but the efficient design of such devices relies on the selection of materials capable of harvesting triplets generated in the fission chromophore. To this aim, the possibility of measuring triplet exciton ynamics with chemical selectivity paves the way for the rational design of complex heterojunctions, with optimized triplet conversion. Here we exploit the chemical sensitivity of X-ray absorption spectroscopy to track triplet exciton dynamics at the picosecond timescale in multilayer films of pentacene, the archetypal singlet fission material. We experimentally identify the signature of the triplet exciton in the Carbon K-edge absorption spectrum and measure its lifetime of about 300 ps. Our results are supported by state-of-the-art ab initio calculations
    • 

    corecore