871 research outputs found
Study of the scientific potential of a three 40 cm Telescopes Interferometer at Dome C
Recent site testing (see:
http://www-luan.unice.fr/Concordiastro/indexantartic.html) has shown that Dome
C in Antarctica might have a high potential for stellar interferometry if some
solutions related to the surface atmospheric layer are found. A demonstrator
interferometer could be envisioned in order to fully qualify the site and
prepare the future development of a large array.
We analyse the performances of a prototype interferometer for Dome C made
with 3 telescopes of 40 cm diameter. It assumes classical Michelson
recombination. The most recent atmospheric and environmental conditions
measured at Dome C are considered (see K. Agabi "First whole atmosphere
night-time seeing measurements at Dome C, Antarctica"). We also study the
possible science reachable with such a demonstrator. Especially we evaluate
that even such small aperture interferometer could allow the detection and low
resolution spectroscopy of the most favourable pegaside planets.Comment: 6 pages, 5 figures, conferences SPIE, 0rlando, 200
AMBER/VLTI high spectral resolution observations of the Br emitting region in HD 98922. A compact disc wind launched from the inner disc region
We analyse the main physical parameters and the circumstellar environment of
the young Herbig Be star HD 98922. We present AMBER/VLTI high spectral
resolution (R =12000) interferometric observations across the Br line,
accompanied by UVES high-resolution spectroscopy and SINFONI-AO assisted
near-infrared integral field spectroscopic data. To interpret our observations,
we develop a magneto-centrifugally driven disc-wind model. Our analysis of the
UVES spectrum shows that HD 98922 is a young (~5x10^5 yr) Herbig Be star
(SpT=B9V), located at a distance of 440(+60-50) pc, with a mass accretion rate
of ~9+/-3x10^(-7) M_sun yr^(-1). SINFONI K-band AO-assisted imaging shows a
spatially resolved circumstellar disc-like region (~140 AU in diameter) with
asymmetric brightness distribution. Our AMBER/VLTI UT observations indicate
that the Br emitting region (radius ~0.31+/-0.04 AU) is smaller than
the continuum emitting region (inner dust radius ~0.7+/-0.2 AU), showing
significant non-zero V-shaped differential phases (i.e. non S-shaped, as
expected for a rotating disc). The value of the continuum-corrected pure
Br line visibility at the longest baseline (89 m) is ~0.8+/-0.1, i.e.
the Br emitting region is partially resolved. Our modelling suggests
that the observed Br line-emitting region mainly originates from a disc
wind with a half opening angle of 30deg, and with a mass-loss rate of ~2x10(-7)
M_sun yr^(-1). The observed V-shaped differential phases are reliably
reproduced by combining a simple asymmetric continuum disc model with our
Br disc-wind model. The Br emission of HD 98922 can be modelled
with a disc wind that is able to approximately reproduce all interferometric
observations if we assume that the intensity distribution of the dust continuum
disc is asymmetric.Comment: Accepted for publication on Astronomy \& Astrophysics. High
resolution figures published on the main journal (see Astronomy &
Astrophysics: Forthcoming) or at
www.researchgate.net/profile/Alessio_Caratti_o_Garatti/publication
Cytochemical techniques and energy-filtering transmission electron microscopy applied to the study of parasitic protozoa
The study of parasitic protozoa plays a major role in cell biology, biochemistry and molecular biology. Numerous cytochemical techniques have been developed in order to unequivocally identify the nature of subcellular compartments. Enzyme and immuno-cytochemistry allow the detection of, respectively, enzymatic activity products and antigens in particular sites within the cell. Energy-filtering transmission electron microscopy permits the detection of specific elements within such compartments. These approaches are particularly useful for studies employing antimicrobial agents where cellular compartments may be destroyed or remarkably altered and thus hardly identified by standard methods of observation. In this regard cytochemical and spectroscopic techniques provide valuable data allowing the determination of the mechanisms of action of such compounds
DETC Induces Leishmania Parasite Killing in Human In Vitro and Murine In Vivo Models: A Promising Therapeutic Alternative in Leishmaniasis
Background: Chemotherapy remains the primary tool for treatment and control of human leishmaniasis. However, currently available drugs present serious problems regarding side-effects, variable efficacy, and cost. Affordable and less toxic drugs are urgently needed for leishmaniasis. Methodology/Principal Findings: We demonstrate, by microscopy and viability assays, that superoxide dismutase inhibitor diethyldithiocarbamate (DETC) dose-dependently induces parasite killing (p,0.001) and is able to ??????sterilize?????? Leishmania amazonensis infection at 2 mM in human macrophages in vitro. We also show that DETC-induced superoxide production (p,0.001) and parasite destruction (p,0.05) were reverted by the addition of the antioxidant N-acetylcysteine, indicating that DETC-induced killing occurs through oxidative damage. Furthermore, ultrastructural analysis by electron microscopy demonstrates a rapid and highly selective destruction of amastigotes in the phagosome upon DETC treatment, without any apparent damage to the host cell, including its mitochondria. In addition, DETC significantly induced parasite killing in Leishmania promastigotes in axenic culture. In murine macrophages infected with Leishmania braziliensis, DETC significantly induced in vitro superoxide production (p = 0.0049) and parasite killing (p = 0.0043). In vivo treatment with DETC in BALB/C mice infected with Leishmania braziliensis caused a significant decrease in lesion size (p,0.0001), paralleled by a 100-fold decrease (p = 0.0087) in parasite burden. Conclusions/Significance: Due to its strong leishmanicidal effect in human macrophages in vitro, its in vivo effectiveness in a murine model, and its previously demonstrated in vivo safety profile in HIV treatment, DETC treatment might be considered as a valuable therapeutic option in human leishmaniasis, including HIV/Leishmania co-infection
Tryptophan metabolism and bacterial commensals prevent fungal dysbiosis in Arabidopsis roots
In nature, roots of healthy plants are colonized by multikingdom microbial communities that include bacteria, fungi, and oomycetes. A key question is how plants control the assembly of these diverse microbes in roots to maintain host–microbe homeostasis and health. Using microbiota reconstitution experiments with a set of immunocompromised Arabidopsis thaliana mutants and a multikingdom synthetic microbial community (SynCom) representative of the natural A. thaliana root microbiota, we observed that microbiota-mediated plant growth promotion was abolished in most of the tested immunocompromised mutants. Notably, more than 40% of between-genotype variation in these microbiota-induced growth differences was explained by fungal but not bacterial or oomycete load in roots. Extensive fungal overgrowth in roots and altered plant growth was evident at both vegetative and reproductive stages for a mutant impaired in the production of tryptophan-derived, specialized metabolites (cyp79b2/b3). Microbiota manipulation experiments with single- and multikingdom microbial SynComs further demonstrated that 1) the presence of fungi in the multikingdom SynCom was the direct cause of the dysbiotic phenotype in the cyp79b2/b3 mutant and 2) bacterial commensals and host tryptophan metabolism are both necessary to control fungal load, thereby promoting A. thaliana growth and survival. Our results indicate that protective activities of bacterial root commensals are as critical as the host tryptophan metabolic pathway in preventing fungal dysbiosis in the A. thaliana root endosphere
Oxygen as a Driver of Early Arthropod Micro-Benthos Evolution
BACKGROUND: We examine the physiological and lifestyle adaptations which facilitated the emergence of ostracods as the numerically dominant Phanerozoic bivalve arthropod micro-benthos. METHODOLOGY/PRINCIPAL FINDINGS: The PO(2) of modern normoxic seawater is 21 kPa (air-equilibrated water), a level that would cause cellular damage if found in the tissues of ostracods and much other marine fauna. The PO(2) of most aquatic breathers at the cellular level is much lower, between 1 and 3 kPa. Ostracods avoid oxygen toxicity by migrating to waters which are hypoxic, or by developing metabolisms which generate high consumption of O(2). Interrogation of the Cambrian record of bivalve arthropod micro-benthos suggests a strong control on ecosystem evolution exerted by changing seawater O(2) levels. The PO(2) of air-equilibrated Cambrian-seawater is predicted to have varied between 10 and 30 kPa. Three groups of marine shelf-dwelling bivalve arthropods adopted different responses to Cambrian seawater O(2). Bradoriida evolved cardiovascular systems that favoured colonization of oxygenated marine waters. Their biodiversity declined during intervals associated with black shale deposition and marine shelf anoxia and their diversity may also have been curtailed by elevated late Cambrian (Furongian) oxygen-levels that increased the PO(2) gradient between seawater and bradoriid tissues. Phosphatocopida responded to Cambrian anoxia differently, reaching their peak during widespread seabed dysoxia of the SPICE event. They lacked a cardiovascular system and appear to have been adapted to seawater hypoxia. As latest Cambrian marine shelf waters became well oxygenated, phosphatocopids went extinct. Changing seawater oxygen-levels and the demise of much of the seabed bradoriid micro-benthos favoured a third group of arthropod micro-benthos, the ostracods. These animals adopted lifestyles that made them tolerant of changes in seawater O(2). Ostracods became the numerically dominant arthropod micro-benthos of the Phanerozoic. CONCLUSIONS/SIGNIFICANCE: Our work has implications from an evolutionary context for understanding how oxygen-level in marine ecosystems drives behaviour
Possible detection of phase changes from the non-transiting planet HD 46375b by CoRoT
The present work deals with the detection of phase changes in an exoplanetary
system. HD 46375 is a solar analog known to host a non-transiting Saturn-mass
exoplanet with a 3.0236 day period. It was observed by the CoRoT satellite for
34 days during the fall of 2008. We attempt to identify at optical wavelengths,
the changing phases of the planet as it orbits its star. We then try to improve
the star model by means of a seismic analysis of the same light curve and the
use of ground-based spectropolarimetric observations. The data analysis relies
on the Fourier spectrum and the folding of the time series. We find evidence of
a sinusoidal signal compatible in terms of both amplitude and phase with light
reflected by the planet. Its relative amplitude is Delta Fp/F* = [13.0, 26.8]
ppm, implying an albedo A=[0.16, 0.33] or a dayside visible brightness
temperature Tb ~ [1880,2030] K by assuming a radius R=1.1 R_Jup and an
inclination i=45 deg. Its orbital phase differs from that of the
radial-velocity signal by at most 2 sigma_RV. However, the tiny planetary
signal is strongly blended by another signal, which we attribute to a telluric
signal with a 1 day period. We show that this signal is suppressed, but not
eliminated, when using the time series for HD 46179 from the same CoRoT run as
a reference. This detection of reflected light from a non-transiting planet
should be confirmable with a longer CoRoT observation of the same field. In any
case, it demonstrates that non-transiting planets can be characterized using
ultra-precise photometric lightcurves with present-day observations by CoRoT
and Kepler. The combined detection of solar-type oscillations on the same
targets (Gaulme et al. 2010a) highlights the overlap between exoplanetary
science and asteroseismology and shows the high potential of a mission such as
Plato.Comment: 4 pages, 6 figure
- …