1,215 research outputs found
Residual strength of equine bone is not reduced by intense fatigue loading: Implications for stress fracture
Fatigue or stress fractures are an important clinical problem in humans as well as racehorses. An important question in this context is, when a bone experiences. fa!igue damage ~uring e~treme use, how much is it weakened compared to its original state? Since there are very ltmtted data on thts quesuon and stress fractures are common in racehorses, we sought to determine the effect of fatigue loading on the monotonic l:trength of equine cortical bone. Beams were machined from the dorsal, medial and lateral cortices of the third metacarpal bones of six thoroughbred racehorses. Beams from left and right bones were assigned to control and fatigue groups. respectively (N- 18 each). The fatigue group was cyclicully loaded in three-point bending at 2Hz for 100,000 cycles at 0- 5000 microstrain while submerged in saline at 37°C. These beams. as well as those in the control group. were then monotonically loaded to failure in three-point bending. The monotonic load-deflection curves were analyzed for differences using three-factor (fatigue loading, ~natotni~ region. and horse)_ analysis o_f variance .. The mean failure load was 3% less in the fatigue group, but thts reduction was only margmally stgmficant. Netther elastic modulus nor yield strength was significantly affected by the fatigue loading. The principal effects of fatigue loading were on post-yield behavior (yield being based on a 0.02% offset criter!on). The work don~ and the load increase between yield and failure were both significantly reduced. All the vanables except post-yteld deflecuon were significantly affected by anatomic region. In summary, loading equivalent to a lifetime of racing does not significantly weaken equine cortical bone ex vivo. The clinical implication of this may be that the biological repair of fatigue damage can actually contribute to stress fracture if pressed too far
Calcium buffering is required to maintain bone stiffness in saline solution
This work determined whether mineral dissolution due to prolonged testing or storage of bone s~\u27imens in normal salint: would alter Lheir elastic modulus. In one experiment, small pieces of equine third metacarpal bone were soaked in normal saline supplemented with varying amounts of CaCI1. Changing Ca ion concentrations in the bath were monitored and the equilibrium concentration was determined. In a second experiment, the elastic moduli of twenty 4 x 10 x 100 mm equine third metacarpal beams were determined non-destructively in four-point bending. Half the beams were then soaked for 10 days in normal saline, and the other half in saline buffered to the bone mineral equilibrium point with Ca ions. Modulus measurements were repeated at 6 and 10 days. The oquilibrium Ca ion con.centration for bone specimens was found to be 57.5 mgl - âą. The modulus of bone specimens soaked in normal saline significantly diminished 2.4%, whereas the modulus of those soaked in calcium-buffered saline did not change significantly
Effects of Impurity Content on the Sintering Characteristics of Plasma-Sprayed Zirconia
Yttria-stabilized zirconia powders, containing different levels of SiO2 and Al2O3, have been plasma sprayed onto metallic substrates. The coatings were detached from their substrates and a dilatometer was used to monitor the dimensional changes they exhibited during prolonged heat treatments. It was found that specimens containing higher levels of silica and alumina exhibited higher rates of linear contraction, in both in-plane and through-thickness directions. The in-plane stiffness and the through-thickness thermal conductivity were also measured after different heat treatments and these were found to increase at a greater rate for specimens with higher impurity (silica and alumina) levels. Changes in the pore architecture during heat treatments were studied using Mercury Intrusion Porosimetry (MIP). Fine scale porosity (<_50 nm) was found to be sharply reduced even by relatively short heat treatments. This is correlated with improvements in inter-splat bonding and partial healing of intra-splat microcracks, which are responsible for the observed changes in stiffness and conductivity, as well as the dimensional changes
The costs of scaling up HIV prevention for high risk groups: lessons learned from the Avahan Programme in India.
OBJECTIVE: The study objective is to measure, analyse costs of scaling up HIV prevention for high-risk groups in India, in order to assist the design of future HIV prevention programmes in South Asia and beyond. DESIGN: Prospective costing study. METHODS: This study is one of the most comprehensive studies of the costs of HIV prevention for high-risk groups to date in both its scope and size. HIV prevention included outreach, sexually transmitted infections (STI) services, condom provision, expertise enhancement, community mobilisation and enabling environment activities. Economic costs were collected from 138 non-government organisations (NGOs) in 64 districts, four state level lead implementing partners (SLPs), and the national programme level (Bill and Melinda Gates Foundation (BMGF)) office over four years using a top down costing approach, presented in US 235(56-1864) and US 477 per person reached in 2004 to US 68 to US$ 64 per person reached. CONCLUSIONS: Scaling up HIV prevention for high risk groups requires significant investment in expertise enhancement and programme administration. However, unit costs decreased with programme expansion in spite of an increase in the scope of activities
Synthesis, antitubercular activity and mechanism of resistance of highly effective thiacetazone analogues
Defining the pharmacological target(s) of currently used drugs and developing new analogues with greater potency are both important aspects of the search for agents that are effective against drug-sensitive and drug-resistant Mycobacterium tuberculosis. Thiacetazone (TAC) is an anti-tubercular drug that was formerly used in conjunction with isoniazid, but removed from the antitubercular chemotherapeutic arsenal due to toxic side effects. However, several recent studies have linked the mechanisms of action of TAC to mycolic acid metabolism and TAC-derived analogues have shown increased potency against M. tuberculosis. To obtain new insights into the molecular mechanisms of TAC resistance, we isolated and analyzed 10 mutants of M. tuberculosis that were highly resistant to TAC. One strain was found to be mutated in the methyltransferase MmaA4 at Gly101, consistent with its lack of oxygenated mycolic acids. All remaining strains harbored missense mutations in either HadA (at Cys61) or HadC (at Val85, Lys157 or Thr123), which are components of the bhydroxyacyl-ACP dehydratase complex that participates in the mycolic acid elongation step. Separately, a library of 31 new TAC analogues was synthesized and evaluated against M. tuberculosis. Two of these compounds, 15 and 16, exhibited minimal inhibitory concentrations 10-fold lower than the parental molecule, and inhibited mycolic acid biosynthesis in a dose-dependent manner. Moreover, overexpression of HadAB HadBC or HadABC in M. tuberculosis led to high level resistance to these compounds, demonstrating that their mode of action is similar to that of TAC. In summary, this study uncovered new mutations associated with TAC resistance and also demonstrated that simple structural optimization of the TAC scaffold was possible and may lead to a new generation of TAC-derived drug candidates for the potential treatment of tuberculosis as mycolic acid inhibitors
Harm reduction and viral hepatitis C in European prisons: a cross-sectional survey of 25 countries
BACKGROUND: Current estimates suggest that 15% of all prisoners
worldwide are chronically infected with the hepatitis C virus
(HCV), and this number is even higher in regions with high rates
of injecting drug use. Although harm reduction services such as
opioid substitution therapy (OST) and needle and syringe
programs (NSPs) are effective in preventing the further spread
of HCV and HIV, the extent to which these are available in
prisons varies significantly across countries. METHODS: The
Hep-CORE study surveyed liver patient groups from 25 European
countries in 2016 and mid-2017 on national policies related to
harm reduction, testing/screening, and treatment for HCV in
prison settings. Results from the cross-sectional survey were
compared to the data from available reports and the
peer-reviewed literature to determine the overall degree to
which European countries implement evidence-based HCV
recommendations in prison settings. RESULTS: Patient groups in
nine countries (36%) identified prisoners as a high-risk
population target for HCV testing/screening. Twenty-one
countries (84%) provide HCV treatment in prisons. However, the
extent of coverage of these treatment programs varies widely.
Two countries (8%) have NSPs officially available in prisons in
all parts of the country. Eleven countries (44%) provide OST in
prisons in all parts of the country without additional
requirements. CONCLUSION: Despite the existence of
evidence-based recommendations, infectious disease prevention
measures such as harm reduction programs are inadequate in
European prison settings. Harm reduction, HCV testing/screening,
and treatment should be scaled up in prison settings in order to
progress towards eliminating HCV as a public health threat
Tetrahydropyrazolo[1,5-a]Pyrimidine-3-Carboxamide and N-Benzyl-6âČ,7âČ-Dihydrospiro[Piperidine-4,4âČ-Thieno[3,2-c]Pyran] analogues with bactericidal efficacy against Mycobacterium tuberculosis targeting MmpL3
Mycobacterium tuberculosis is a major human pathogen and the causative agent for the pulmonary disease, tuberculosis (TB). Current treatment programs to combat TB are under threat due to the emergence of multi-drug and extensively-drug resistant TB. As part of our efforts towards the discovery of new anti-tubercular leads, a number of potent tetrahydropyrazolo[1,5-a]pyrimidine-3-caârboxamide(THPP) and N-benzyl-6âČ,7âČ-dihydrospiro[piperidine-4,â4âČ-thieno[3,2-c]pyran](Spiro) analogues were recently identified against Mycobacterium tuberculosis and Mycobacterium bovis BCG through a high-throughput whole-cell screening campaign. Herein, we describe the attractive in vitro and in vivo anti-tubercular profiles of both lead series. The generation of M. tuberculosis spontaneous mutants and subsequent whole genome sequencing of several resistant mutants identified single mutations in the essential mmpL3 gene. This âgenetic phenotypeâ was further confirmed by a âchemical phenotypeâ, whereby M. bovis BCG treated with both the THPP and Spiro series resulted in the accumulation of trehalose monomycolate. In vivo efficacy evaluation of two optimized THPP and Spiro leads showed how the compounds were able to reduce >2 logs bacterial cfu counts in the lungs of infected mice
A Baker\u27s Dozen of Top Antimicrobial Stewardship Intervention Publications in 2018
© The Author(s) 2019 Phytochemical investigation of methanolic extract of Limonium leptophyllum (Plumbaginaceae), led to the isolation of 1 new isoflavonoid with a rare 5-membered dihydrofuran ring (1, leptoisoflavone A) and 8 known compounds. The known isolated compounds were identified as euchrenone b9 (2), auriculasin (3), kaempferol (4), avicularoside (5), myrice-tin-3-arabinoside (6), trans-N-feruloyltyramine (7), trans-N-caffeoyltyramine (8), and ÎČ-sitosterol (9). The crude methanolic extract exhibited moderate activity toward endocannabinoid receptors. Auriculasin (3) showed activity toward cannabinoid receptor type 1 (86.7% displacement with IC50 8.92 ÎŒM)
An evaluation of metal removal during wastewater treatment: The potential to achieve more stringent final effluent standards
This is the author's accepted manuscript. The final published article is available from the link below. Copyright @ 2011 Taylor & Francis.Metals are of particular importance in relation to water quality, and concern regarding the impact of these contaminants on biodiversity is being encapsulated within the latest water-related legislation such as the Water Framework Directive in Europe and criteria revisions to the Clean Water Act in the United States. This review undertakes an evaluation of the potential of 2-stage wastewater treatment consisting of primary sedimentation and biological treatment in the form of activated sludge processes, to meet more stringent discharge consents that are likely to be introduced as a consequence. The legislation, sources of metals, and mechanisms responsible for their removal are discussed, to elucidate possible pathways by which the performance of conventional processes may be optimized or enhanced. Improvements in effluent quality, achievable by reducing concentrations of suspended solids or biochemical oxygen demand, may also reduce metal concentrations although meeting possible requirements for the removal of copper my be challenging
Recommended from our members
A Mathematical Model of Breast Tumor Progression Based on Immune Infiltration
Breast cancer is the most prominent type of cancer among women. Understanding the microenvironment of breast cancer and the interactions between cells and cytokines will lead to better treatment approaches for patients. In this study, we developed a data-driven mathematical model to investigate the dynamics of key cells and cytokines involved in breast cancer development. We used gene expression profiles of tumors to estimate the relative abundance of each immune cell and group patients based on their immune patterns. Dynamical results show the complex interplay between cells and molecules, and sensitivity analysis emphasizes the direct effects of macrophages and adipocytes on cancer cell growth. In addition, we observed the dual effect of IFN-Îł role= presentation style= box-sizing: border-box; max-height: none; display: inline; line-height: normal; word-spacing: normal; overflow-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; min-width: 0px; min-height: 0px; border: 0px; padding: 0px; margin: 0px; position: relative; \u3eÎł on cancer proliferation, either through direct inhibition of cancer cells or by increasing the cytotoxicity of CD8+ T-cells
- âŠ