8,366 research outputs found

    A recurrence matrix method for the analysis of longitudinal and torsional vibrations in non-uniform multibranch beams with variable boundary conditions

    Get PDF
    An approximate method for calculating the longitudinal and torsional natural frequencies and associated modal data of a beamlike, variable cross section multibranch structure is presented. The procedure described is the numerical integration of the first order differential equations that characterize the beam element in longitudinal motion and that satisfy the appropriate boundary conditions

    Theoretical performance of cross-wind axis turbines with results for a catenary vertical axis configuration

    Get PDF
    A general analysis capable of predicting performance characteristics of cross-wind axis turbines was developed, including the effects of airfoil geometry, support struts, blade aspect ratio, windmill solidity, blade interference and curved flow. The results were compared with available wind tunnel results for a catenary blade shape. A theoretical performance curve for an aerodynamically efficient straight blade configuration was also presented. In addition, a linearized analytical solution applicable for straight configurations was developed. A listing of the computer program developed for numerical solutions of the general performance equations is included in the appendix

    Mechanical control of spin-orbit splitting in GaAs and InGaAs epilayers

    Full text link
    Time-resolved Kerr rotation spectroscopy as a function of pump-probe distance, voltage and magnetic field is used to measure the momentum-dependent spin splitting energies in GaAs and InGaAs epilayers. The strain of the samples can be reproducibly controlled in the cryostat using three- and four-point bending applied with a mechanical vise. We find that the magnitude of the spin splitting increases linearly with applied tension and voltage. A strain-drift diffusion model is used to relate the magnitude of the measured spin-orbit splitting to the amount of strain in the sample.Comment: 4 pages, 5 figure

    Nuclear magnetic resonance probes for the Kondo scenario for the 0.7 feature in semiconductor quantum point contact devices

    Full text link
    We propose a probe based on nuclear relaxation and Knight shift measurements for the Kondo scenario for the "0.7 feature" in semiconductor quantum point contact (QPC) devices. We show that the presence of a bound electron in the QPC would lead to a much higher rate of nuclear relaxation compared to nuclear relaxation through exchange of spin with conduction electrons. Furthermore, we show that the temperature dependence of this nuclear relaxation is very non-monotonic as opposed to the linear-T relaxation from coupling with conduction electrons. We present a qualitative analysis for the additional relaxation due to nuclear spin diffusion (NSD) and study the extent to which NSD affects the range of validity of our method. The conclusion is that nuclear relaxation, in combination with Knight shift measurements, can be used to verify whether the 0.7 feature is indeed due to the presence of a bound electron in the QPC.Comment: Published version. Appears in a Special Section on the 0.7 Feature and Interactions in One-Dimensional Systems. 16 page

    The design of an experiment to detect low energy antiprotons

    Get PDF
    The techniques to be used in a balloon borne experiment APEX to detect 220 MeV antiprotons are described, paying particular attention to potential sources of background. Event time history is shown to be very effective in eliminating this background. Results of laboratory tests on the timing resolution which may be achieved are presented

    Ames collaborative study of cosmic ray neutrons

    Get PDF
    The results of a collaborative study to define both the neutron flux and the spectrum more precisely and to develop a dosimetry package that can be flown quickly to altitude for solar flare events are described. Instrumentation and analysis techniques were used which were developed to measure accelerator-produced radiation. The instruments were flown in the Ames Research Center high altitude aircraft. Neutron instrumentation consisted of Bonner spheres with both active and passive detector elements, threshold detectors of both prompt-counter and activation-element types, a liquid scintillation spectrometer based on pulse-shape discrimination, and a moderated BF3 counter neutron monitor. In addition, charged particles were measured with a Reuter-Stokes ionization chamber system and dose equivalent with another instrument. Preliminary results from the first series of flights at 12.5 km (41,000 ft) are presented, including estimates of total neutron flux intensity and spectral shape and of the variation of intensity with altitude and geomagnetic latitude

    Commensurate and modulated magnetic phases in orthorhombic A1C60

    Full text link
    Competing magnetically ordered structures in polymerized orthorhombic A1C60 are studied. A mean-field theory for the equilibrium phases is developed using an Ising model and a classical Heisenberg model to describe the competition between inter- and intra-chain magnetic order in the solid. In the Ising model, the limiting commensurate one-dimensional and three-dimensional phases are separated by a commensurate three-sublattice state and by two sectors containing higher-order commensurate phases. For the Heisenberg model the quasi-1D phase is never the equilibrium state; instead the 3D commensurate phases exhibits a transition to a continuum of coplanar spiral magnetic phases.Comment: 11 pages REVTeX 3.0 plus 4 figures appende

    Determination of RET Sequence Variation in an MEN2 Unaffected Cohort Using Multiple-Sample Pooling and Next-Generation Sequencing

    Get PDF
    Multisample, nonindexed pooling combined with next-generation sequencing (NGS) was used to discover RET proto-oncogene sequence variation within a cohort known to be unaffected by multiple endocrine neoplasia type 2 (MEN2). DNA samples (113 Caucasians, 23 persons of other ethnicities) were amplified for RET intron 9 to intron 16 and then divided into 5 pools of <30 samples each before library prep and NGS. Two controls were included in this study, a single sample and a pool of 50 samples that had been previously sequenced by the same NGS methods. All 59 variants previously detected in the 50-pool control were present. Of the 61 variants detected in the unaffected cohort, 20 variants were novel changes. Several variants were validated by high-resolution melting analysis and Sanger sequencing, and their allelic frequencies correlated well with those determined by NGS. The results from this unaffected cohort will be added to the RET MEN2 database

    Undergraduate views of critical thinking

    Get PDF
    Clemson University\u27s Quality Enhanement Plan (QEP) is designed to assist undergraduates in the development of their critical thinking skills. Paul et al. (1997) found that professors indicate that they value critical thinking as important, explicit, and achieved in their students, but faculty also are vague and confusing in their open-ended descriptions of the conceptual and practical components of critical thinking instruction in the classroom. The purpose of the current study was to assess student views of the a typical professor\u27s views and student\u27s own personal views using modified versions of the survey items that Paul et al. (1997) employed. Students (n = 139) completed two eleven-item surveys; one framed a typical professor\u27s view and the other framed the student\u27s personal views of critical thinking. Students do not rate a typical professor as valuing critical thinking as important explicit and achieved in their students
    corecore