154,447 research outputs found

    Black hole as an Information Eraser

    Full text link
    We discuss the identity of black hole entropy and show that the first law of black hole thermodynamics, in the case of a Schwarzschild black hole, can be derived from Landauer's principle by assuming that the black hole is one of the most efficient information erasers in systems of a given temperature. The term "most efficient" implies that minimal energy is required to erase a given amount of information. We calculate the discrete mass spectra and the entropy of a Schwarzschild black hole assuming that the black hole processes information in unit of bits. The black hole entropy acquires a sub-leading contribution proportional to the logarithm of its mass-squared in addition to the usual mass-squared term without an artificial cutoff. We also argue that the minimum of the black hole mass is log⁥2/(8π)MP\sqrt{\log 2/(8\pi)}M_P.Comment: 12 pages, 4 figures, minor change

    Temperature-dependent errors in nuclear lattice simulations

    Get PDF
    We study the temperature dependence of discretization errors in nuclear lattice simulations. We find that for systems with strong attractive interactions the predominant error arises from the breaking of Galilean invariance. We propose a local "well-tempered" lattice action which eliminates much of this error. The well-tempered action can be readily implemented in lattice simulations for nuclear systems as well as cold atomic Fermi systems.Comment: 33 pages, 17 figure

    Search for Free Fractional Electric Charge Elementary Particles

    Get PDF
    We have carried out a direct search in bulk matter for free fractional electric charge elementary particles using the largest mass single sample ever studied - about 17.4 mg of silicone oil. The search used an improved and highly automated Millikan oil drop technique. No evidence for fractional charge particles was found. The concentration of particles with fractional charge more than 0.16e (e being the magnitude of the electron charge) from the nearest integer charge is less than 4.71×10−224.71\times10^{-22} particles per nucleon with 95% confidence.Comment: 10 pages,LaTeX, 4 PS figures, submitted to PR

    Resolution of the strong CP problem

    Full text link
    It is shown that the quark mass aligns QCD Ξ\theta vacuum in such a way that the strong CP is conserved, resolving the strong CP problem.Comment: 9 pages;v2 slightly rewritten and expanded;v3 a few points clarified;v4 minor changes, journal versio

    Relativistic Coulomb Green's function in dd-dimensions

    Full text link
    Using the operator method, the Green's functions of the Dirac and Klein-Gordon equations in the Coulomb potential −Zα/r-Z\alpha/r are derived for the arbitrary space dimensionality dd. Nonrelativistic and quasiclassical asymptotics of these Green's functions are considered in detail.Comment: 9 page

    Vacuum polarization radiative correction to the parity violating electron scattering on heavy nuclei

    Full text link
    The effect of vacuum polarization on the parity violating asymmetry in the elastic electron-nucleus scattering is considered. Calculations are performed in the high-energy approximation with an exact account for the electric field of the nucleus. It is shown that the radiative correction to the parity violating asymmetry is logarithmically enhanced and the value of the correction is about -1%.Comment: 6 pages, 3 figures, REVTex

    Generalized Hamilton-Jacobi equations for nonholonomic dynamics

    Full text link
    Employing a suitable nonlinear Lagrange functional, we derive generalized Hamilton-Jacobi equations for dynamical systems subject to linear velocity constraints. As long as a solution of the generalized Hamilton-Jacobi equation exists, the action is actually minimized (not just extremized)
    • 

    corecore