31,437 research outputs found

    Wakefield damping for the CLIC crab cavity

    Get PDF
    A crab cavity is required in the CLIC to allow effective head-on collision of bunches at the IP. A high operating frequency is preferred as the deflection voltage required for a given rotation angle and the RF phase tolerance for a crab cavity are inversely proportional to the operating frequency. The short bunch spacing of the CLIC scheme and the high sensitivity of the crab cavity to dipole kicks demand very high damping of the inter-bunch wakes, the major contributor to the luminosity loss of colliding bunches. This paper investigates the nature of the wakefields in the CLIC crab cavity and the possibility of using various damping schemes to suppress them effectively

    A High Phase Advance Damped and Detuned Structure for the Main Linacs of Clic

    Full text link
    The main accelerating structures for the CLIC are designed to operate at an average accelerating gradient of 100 MV/m. The accelerating frequency has been optimised to 11.994 GHz with a phase advance of 2{\pi}/3 of the main accelerating mode. The moderately damped and detuned structure (DDS) design is being studied as an alternative to the strongly damped WDS design. Both these designs are based on the nominal accelerating phase advance. Here we explore high phase advance (HPA) structures in which the group velocity of the rf fields is reduced compared to that of standard (2{\pi}/3) structures. The electrical breakdown strongly depends on the fundamental mode group velocity. Hence it is expected that electrical breakdown is less likely to occur in the HPA structures. We report on a study of both the fundamental and dipole modes in a CLIC_DDS_HPA structure, designed to operate at 5{\pi}/6 phase advance per cell. Higher order dipole modes in both the standard and HPA structures are also studied

    Tuning Electrical Conductivity of CNT-PDMS Nanocomposites for Flexible Electronic Applications

    Get PDF
    This paper presents a study into the electrical conductivity of multi-wall carbon nanotube-polydimethylsiloxane (MWNT-PDMS) nanocomposite and their dependence on the filler concentration. It is observed that the electrical conductivity of the composites can be tailored by altering the filler concentration. Accordingly, the nanocomposites with filler weight ratio ranging from 1% to 8% were prepared and tested. Finally, the significance of results presented here for flexible pressure sensors and stretchable interconnects for electronic skin applications have been discussed

    Enhanced coupling design of a detuned damped structure for clic

    Full text link
    The key feature of the improved coupling design in the Damped Detuned Structure (DDS) is focused on the four manifolds. Rectangular geometry slots and rectangular manifolds are used. This results in a significantly stronger coupling to the manifolds compared to the previous design. We describe the new design together with its wakefield damping properties.Comment: 3 pages, 8 figures, submitted to IPAC1

    Present Status of Lattice QCD at nonzero T and \mu

    Get PDF
    I review a few selected topics in Lattice Quantum Chromo Dynamics, focusing more on the recent results. These include i) the equation of state and speed of sound, ii) J/\psi suppression, iii) flavour correlations and iv) the QCD phase diagram in the \mu-T plane.Comment: 13 Pages including figures, Plenary Talk at the 9th Workshop on High Energy Physics Phenomenology, ``WHEPP9'', Bhubaneswar, India, January 3-14, 2006, To appear in Praman
    • …
    corecore