449 research outputs found

    Charge transport through weakly open one dimensional quantum wires

    Full text link
    We consider resonant transmission through a finite-length quantum wire connected to leads via finite transparency junctions. The coherent electron transport is strongly modified by the Coulomb interaction. The low-temperature current-voltage (IVIV) curves show step-like dependence on the bias voltage determined by the distance between the quantum levels inside the conductor, the pattern being dependent on the ratio between the charging energy and level spacing. If the system is tuned close to the resonance condition by the gate voltage, the low-voltage IVIV curve is Ohmic. At large Coulomb energy and low temperatures, the conductance is temperature-independent for any relationship between temperature, level spacing, and coupling between the wire and the leads

    Current and noise expressions for radio-frequency single-electron transistors

    Full text link
    We derive self-consistent expressions of current and noise for single-electron transistors driven by time-dependent perturbations. We take into account effects of the electrical environment, higher-order co-tunneling, and time-dependent perturbations under the two-charged state approximation using the Schwinger-Kedysh approach combined with the generating functional technique. For a given generating functional, we derive exact expressions for tunneling currents and noises and present the forms in terms of transport coefficients. It is also shown that in the adiabatic limit our results encompass previous formulas. In order to reveal effects missing in static cases, we apply the derived results to simulate realized radio-frequency single-electron transistor. It is found that photon-assisted tunneling affects largely the performance of the single-electron transistor by enhancing both responses to gate charges and current noises. On various tunneling resistances and frequencies of microwaves, the dependence of the charge sensitivity is also discussed.Comment: 18 pages, 9 figure

    Ballistic Composite Fermions in Semiconductor Nanostructures

    Full text link
    We report the results of two fundamental transport measurements at a Landau level filling factor ν\nu of 1/2. The well known ballistic electron transport phenomena of quenching of the Hall effect in a mesoscopic cross-junction and negative magnetoresistance of a constriction are observed close to B~=~0 and ν = 1/2\nu~=~ 1/2. The experimental results demonstrate semi-classical charge transport by composite fermions, which consist of electrons bound to an even number of flux quanta.Comment: 9 pages TeX 3.1415 C version 6.1, 3 PostScript figure

    Analysis of the temperature-dependent quantum point contact conductance in view of the metal-insulator transition in two dimensions

    Full text link
    The temperature dependence of the conductance of a quantum point contact has been measured. The conductance as a function of the Fermi energy shows temperature-independent fixed points, located at roughly multiple integers of e2/he^{2}/h. Around the first fixed point at e2^{2}/h, the experimental data for different temperatures can been scaled onto a single curve. For pure thermal smearing of the conductance steps, a scaling parameter of one is expected. The measured scaling parameter, however, is significantly larger than 1. The deviations are interpreted as a signature of the potential landscape of the quantum point contact, and of the source-drain bias voltage. We relate our results phenomenologically to the metal-insulator transition in two dimensions.Comment: 5 pages, 3 figure

    Sensitivity and back-action in charge qubit measurements by a strongly coupled single-electron transistor

    Full text link
    We consider charge-qubit monitoring (continuous-in-time weak measurement) by a single-electron transistor (SET) operating in the sequential-tunneling regime. We show that commonly used master equations for this regime are not of the Lindblad form that is necessary and sufficient for guaranteeing valid physical states. In this paper we derive a Lindblad-form master equation and a corresponding quantum trajectory model for continuous measurement of the charge qubit by a SET. Our approach requires that the SET-qubit coupling be strong compared to the SET tunnelling rates. We present an analysis of the quality of the qubit measurement in this model (sensitivity versus back-action). Typically, the strong coupling when the SET island is occupied causes back-action on the qubit beyond the quantum back-action necessary for its sensitivity, and hence the conditioned qubit state is mixed. However, in one strongly coupled, asymmetric regime, the SET can approach the limit of an ideal detector with an almost pure conditioned state. We also quantify the quality of the SET using more traditional concepts such as the measurement time and decoherence time, which we have generalized so as to treat the strongly responding regime.Comment: About 11 pages, 6 figures. Changes in v2: we made general improvements to the manuscript including, but not limited to(!), the removal of one reference, and modification of the footnote

    Time Dependent Current Oscillations Through a Quantum Dot

    Full text link
    Time dependent phenomena associated to charge transport along a quantum dot in the charge quantization regime is studied. Superimposed to the Coulomb blockade behaviour the current has novel non-linear properties. Together with static multistabilities in the negative resistance region of the I-V characteristic curve, strong correlations at the dot give rise to self-sustained current and charge oscillations. Their properties depend upon the parameters of the quantum dot and the external applied voltages.Comment: 4 pages, 3 figures; to appear in PR

    Multiple Projection Optical Diffusion Tomography with Plane Wave Illumination

    Full text link
    We describe a new data collection scheme for optical diffusion tomography in which plane wave illumination is combined with multiple projections in the slab imaging geometry. Multiple projection measurements are performed by rotating the slab around the sample. The advantage of the proposed method is that the measured data can be much more easily fitted into the dynamic range of most commonly used detectors. At the same time, multiple projections improve image quality by mutually interchanging the depth and transverse directions, and the scanned (detection) and integrated (illumination) surfaces. Inversion methods are derived for image reconstructions with extremely large data sets. Numerical simulations are performed for fixed and rotated slabs

    Localization fom conductance in few-channel disordered wires

    Full text link
    We study localization in two- and three channel quasi-1D systems using multichain tight-binding Anderson models with nearest-neighbour interchain hopping. In the three chain case we discuss both the case of free- and that of periodic boundary conditions between the chains. The finite disordered wires are connected to ideal leads and the localization length is defined from the Landauer conductance in terms of the transmission coefficients matrix. The transmission- and reflection amplitudes in properly defined quantum channels are obtained from S-matrices constructed from transfer matrices in Bloch wave bases for the various quasi-1D systems. Our exact analytic expressions for localization lengths for weak disorder reduce to the Thouless expression for 1D systems in the limit of vanishing interchain hopping. For weak interchain hopping the localization length decreases with respect to the 1D value in all three cases. In the three-channel cases it increases with interchain hopping over restricted domains of large hopping

    Periodic and Aperiodic Bunching in the Addition Spectra of Quantum Dot

    Full text link
    We study electron addition spectra of quantum dots in a broad range of electron occupancies starting from the first electron. Spectra for dots containing <200 electrons reveal a surprising feature. Electron additions are not evenly spaced in gate voltage. Rather, they group into bunches. With increasing electron number the bunching evolves from occurring randomly to periodically at about every fifth electron. The periodicity of the bunching and features in electron tunneling rates suggest that the bunching is associated with electron additions into spatially distinct regions within the dots.Comment: 4 pages, 2 figures. Submitted to PR

    The antiangiogenic agent ZD4190 prevents tumour outgrowth in a model of minimal residual carcinoma in deep tissues

    Get PDF
    BACKGROUND: Tumour cells may persist at the operative site after seemingly adequate surgery. Radiotherapy is often given in an attempt to prevent repopulation, but this modality cannot be relied upon to prevent locoregional recurrence. An alternative strategy is to take advantage of the requirement of tumour cells to develop an independent blood supply and block this process to prevent recurrence. METHODS: In this study, we evaluate the effect of the angiogenesis inhibitor, ZD4190, using a rodent model of residual carcinoma in deep tissues, mimicking the clinical scenario where low numbers of malignant cells persist at the operative site. RESULTS: The tumour burden that could be eliminated was dependent on the site where the cells were implanted. Immediate treatment with ZD4190 prevented outgrowth of up to 2.5 x 10(5) cells in the rectus muscle and 1 x 10(5) in the gastrocnemius, whereas control animals developed large tumours. When more than 2.5 x 10(6) cells were implanted into the rectus or 1 x 10(6) into the gastrocnemius and treatment was maintained for 3 weeks, the carcinomas that developed in ZD4190-treated animals showed a reduced microvessel density and increased necrosis when compared with the vehicle-treated controls, but an infiltrative growth pattern was common. CONCLUSION: These findings suggest that antiangiogenic agents have a role to play in preventing outgrowth of residual carcinoma and are likely to be most effective when the tumour burden is minimal
    • …
    corecore