4,073 research outputs found
Recommended from our members
Perceptions of the benefits of the A3 planner in facilitating project-based learning in accounting education
This paper evaluates ways of instilling project management skills into accounting-based learning by the use of an iterative A3 planner to plan, monitor and review assignment progress. The application of an A3 planner to facilitate a project-based learning (PBL) group assignment in undergraduate accounting education has been critically evaluated in terms of both the student and tutor experience. The study uses a mix of qualitative and quantitative data. Quantitative data assisting exploration of perceptions were collected through 100 undergraduate students. A series of focus group discussions were carried out to investigate students' engagement and tutors' teaching experiences regarding the adoption of the A3 planner. The results suggest that the A3 planner promotes active planning and effective management of a PBL group assignment. It makes students' thought processes more visible thereby facilitating and enhancing the tutoring/mentoring process. Moreover a more interactive and transparent approach by doing assignment via the use of an iterative A3 planner has ensured more feedback points and action based efficiency in the doing approach for learners
Resonance line-profile calculations based on hydrodynamical models of cataclysmic variable winds
We present synthetic line profiles as predicted by the models of 2-D line-
driven disk winds due to Proga, Stone & Drew. We compare the model line
profiles with HST observations of the cataclysmic variable IX Vel. The model
wind consists of a slow outflow that is bounded on the polar side by a fast
stream. We find that these two components of the wind produce distinct spectral
features. The fast stream produces profiles which show features consistent with
observations. These include the appearance of the P-Cygni shape for a range of
inclinations, the location of the maximum depth of the absorption component at
velocities less than the terminal velocity, and the transition from absorption
to emission with increasing inclination. However the model profiles have too
little absorption or emission equivalent width. This quantitative difference
between our models and observations is not a surprise because the line-driven
wind models predict a mass loss rate that is lower than the rate required by
the observations. We note that the model profiles exhibit a double-humped
structure near the line center which is not echoed in observations. We identify
this structure with a non-negligible redshifted absorption which is formed in
the slow component of the wind where the rotational velocity dominates over
expansion velocity. We conclude that the next generation of disk wind models,
developed for application to CVs, needs to yield stronger wind driving out to
larger disk radii than do the present models.Comment: LaTeX, 19 pages, to appear in Ap
Entropy as a function of Geometric Phase
We give a closed-form solution of von Neumann entropy as a function of
geometric phase modulated by visibility and average distinguishability in
Hilbert spaces of two and three dimensions. We show that the same type of
dependence also exists in higher dimensions. We also outline a method for
measuring both the entropy and the phase experimentally using a simple
Mach-Zehnder type interferometer which explains physically why the two concepts
are related.Comment: 19 pages, 7 figure
hMOB2 deficiency impairs homologous recombination-mediated DNA repair and sensitises cancer cells to PARP inhibitors
Monopolar spindle-one binder (MOBs) proteins are evolutionarily conserved and contribute to various cellular signalling pathways. Recently, we reported that hMOB2 functions in preventing the accumulation of endogenous DNA damage and a subsequent p53/p21-dependent G1/S cell cycle arrest in untransformed cells. However, the question of how hMOB2 protects cells from endogenous DNA damage accumulation remained enigmatic. Here, we uncover hMOB2 as a regulator of double-strand break (DSB) repair by homologous recombination (HR). hMOB2 supports the phosphorylation and accumulation of the RAD51 recombinase on resected single-strand DNA (ssDNA) overhangs. Physiologically, hMOB2 expression supports cancer cell survival in response to DSB-inducing anti-cancer compounds. Specifically, loss of hMOB2 renders ovarian and other cancer cells more vulnerable to FDA-approved PARP inhibitors. Reduced MOB2 expression correlates with increased overall survival in patients suffering from ovarian carcinoma. Taken together, our findings suggest that hMOB2 expression may serve as a candidate stratification biomarker of patients for HR-deficiency targeted cancer therapies, such as PARP inhibitor treatments
Fast and Accurate Camera Covariance Computation for Large 3D Reconstruction
Estimating uncertainty of camera parameters computed in Structure from Motion
(SfM) is an important tool for evaluating the quality of the reconstruction and
guiding the reconstruction process. Yet, the quality of the estimated
parameters of large reconstructions has been rarely evaluated due to the
computational challenges. We present a new algorithm which employs the sparsity
of the uncertainty propagation and speeds the computation up about ten times
\wrt previous approaches. Our computation is accurate and does not use any
approximations. We can compute uncertainties of thousands of cameras in tens of
seconds on a standard PC. We also demonstrate that our approach can be
effectively used for reconstructions of any size by applying it to smaller
sub-reconstructions.Comment: ECCV 201
Squeezed States of the Generalized Minimum Uncertainty State for the Caldirola-Kanai Hamiltonian
We show that the ground state of the well-known pseudo-stationary states for
the Caldirola-Kanai Hamiltonian is a generalized minimum uncertainty state,
which has the minimum allowed uncertainty , where is a constant depending on the damping
factor and natural frequency. The most general symmetric Gaussian states are
obtained as the one-parameter squeezed states of the pseudo-stationary ground
state. It is further shown that the coherent states of the pseudo-stationary
ground state constitute another class of the generalized minimum uncertainty
states.Comment: RevTex4, 9 pages, no fingure; to be published in Journal of Physics
Accurate and linear time pose estimation from points and lines
The final publication is available at link.springer.comThe Perspective-n-Point (PnP) problem seeks to estimate the pose of a calibrated camera from n 3Dto-2D point correspondences. There are situations, though, where PnP solutions are prone to fail because feature point correspondences cannot be reliably estimated (e.g. scenes with repetitive patterns or with low texture). In such
scenarios, one can still exploit alternative geometric entities, such as lines, yielding the so-called Perspective-n-Line (PnL) algorithms. Unfortunately, existing PnL solutions are not as accurate and efficient as their point-based
counterparts. In this paper we propose a novel approach to introduce 3D-to-2D line correspondences into a PnP formulation, allowing to simultaneously process points and lines. For this purpose we introduce an algebraic line error
that can be formulated as linear constraints on the line endpoints, even when these are not directly observable. These constraints can then be naturally integrated within the linear formulations of two state-of-the-art point-based algorithms,
the OPnP and the EPnP, allowing them to indistinctly handle points, lines, or a combination of them. Exhaustive experiments show that the proposed formulation brings remarkable boost in performance compared to only point or
only line based solutions, with a negligible computational overhead compared to the original OPnP and EPnP.Peer ReviewedPostprint (author's final draft
Gender parity in scientific authorship in a National Institute for Health Research Biomedical Research Centre: a bibliometric analysis
Objective
Scientific authorship is a vital marker of achievement in academic careers and gender equity is a key performance metric in research. However, there is little understanding of gender equity in publications in biomedical research centres funded by the National Institute for Health Research (NIHR). This study assesses the gender parity in scientific authorship of biomedical research.
Design
Descriptive, cross-sectional, retrospective bibliometric study.
Setting
NIHR Oxford Biomedical Research Centre (BRC).
Data
Data comprised 2409 publications that were either accepted or published between April 2012 and March 2017. The publications were classified as basic science studies, clinical studies (both trial and non-trial studies) and other studies (comments, editorials, systematic reviews, reviews, opinions, book chapters, meeting reports, guidelines and protocols).
Main outcome measures
Gender of authors, defined as a binary variable comprising either male or female categories, in six authorship categories: first author, joint first authors, first corresponding author, joint corresponding authors, last author and joint last authors.
Results
Publications comprised 39% clinical research (n=939), 27% basic research (n=643) and 34% other types of research (n=827). The proportion of female authors as first author (41%), first corresponding authors (34%) and last author (23%) was statistically significantly lower than male authors in these authorship categories (p<0.001). Of total joint first authors (n=458), joint corresponding authors (n=169) and joint last authors (n=229), female only authors comprised statistically significant (p<0.001) smaller proportions, that is, 15% (n=69), 29% (n=49) and 10% (n=23) respectively, compared with male only authors in these joint authorship categories. There was a statistically significant association between gender of the last author with gender of the first author (p<0.001), first corresponding author (p<0.001) and joint last author (p<0.001). The mean journal impact factor (JIF) was statistically significantly higher when the first corresponding author was male compared with female (Mean JIF: 10.00 vs 8.77, p=0.020); however, the JIF was not statistically different when there were male and female authors as first authors and last authors.
Conclusions
Although the proportion of female authors is significantly lower than the proportion of male authors in all six categories of authorship analysed, the proportions of male and female last authors are comparable to their respective proportions as principal investigators in the BRC. These findings suggest positive trends and the NIHR Oxford BRC doing very well in gender parity in the senior (last) authorship category. Male corresponding authors are more likely to publish articles in prestigious journals with high impact factor while both male and female authors at first and last authorship positions publish articles in equally prestigious journals
Three manifestations of the pulsed harmonic potential
We consider, in turn, three systems being acted upon by a regularly pulsed
harmonic potential (PHP). These are i) a classical particle, ii) a quantum
particle, and iii) a directed line. We contrast the mechanics of the first two
systems by parameterizing their bands of stability and periodicity. Interesting
differences due to quantum fluctuations are examined in detail. The
fluctuations of the directed line are calculated in the two cases of a binding
PHP, and an unbinding PHP. In the latter case there is a finite maximum line
length for a given potential strength.Comment: 34 Revtex pages, with 5 attached figure
- …