32,203 research outputs found
Nucleon-nucleon charge symmetry breaking and the dd -> alpha pi0 reaction
We show that using parameters consistent with the charge symmetry violating
difference between the strong nn and pp scattering lengths provides significant
constraints on the amplitude for the dd -> alpha pi0 reaction.Comment: 4 pages, 1 figur
Tadpole Method and Supersymmetric O(N) Sigma Model
We examine the phase structures of the supersymmetric O(N) sigma model in two
and three dimensions by using the tadpole method. Using this simple method, the
calculation is largely simplified and the characteristics of this theory become
clear. We also examine the problem of the fictitious negative energy state.Comment: Plain Latex(12pages), No figur
Symbolic computation of exact solutions expressible in hyperbolic and elliptic functions for nonlinear PDEs
Algorithms are presented for the tanh- and sech-methods, which lead to
closed-form solutions of nonlinear ordinary and partial differential equations
(ODEs and PDEs). New algorithms are given to find exact polynomial solutions of
ODEs and PDEs in terms of Jacobi's elliptic functions.
For systems with parameters, the algorithms determine the conditions on the
parameters so that the differential equations admit polynomial solutions in
tanh, sech, combinations thereof, Jacobi's sn or cn functions. Examples
illustrate key steps of the algorithms.
The new algorithms are implemented in Mathematica. The package
DDESpecialSolutions.m can be used to automatically compute new special
solutions of nonlinear PDEs. Use of the package, implementation issues, scope,
limitations, and future extensions of the software are addressed.
A survey is given of related algorithms and symbolic software to compute
exact solutions of nonlinear differential equations.Comment: 39 pages. Software available from Willy Hereman's home page at
http://www.mines.edu/fs_home/whereman
Charge-Symmetry-Breaking Three-Nucleon Forces
Leading-order three-nucleon forces that violate isospin symmetry are
calculated in Chiral Perturbation Theory. The effect of the
charge-symmetry-breaking three-nucleon force is investigated in the trinucleon
systems using Faddeev calculations. We find that the contribution of this force
to the 3He - 3H binding-energy difference is approximately 5 keV.Comment: 14 pages, 3 figure
Mutant Huntingtin Does Not Affect the Intrinsic Phenotype of Human Huntington's Disease T Lymphocytes
Huntington's disease is a fatal neurodegenerative condition caused by a CAG repeat expansion in the huntingtin gene. The peripheral innate immune system is dysregulated in Huntington's disease and may contribute to its pathogenesis. However, it is not clear whether or to what extent the adaptive immune system is also involved. Here, we carry out the first comprehensive investigation of human ex vivo T lymphocytes in Huntington's disease, focusing on the frequency of a range of T lymphocyte subsets, as well as analysis of proliferation, cytokine production and gene transcription. In contrast to the innate immune system, the intrinsic phenotype of T lymphocytes does not appear to be affected by the presence of mutant huntingtin, with Huntington's disease T lymphocytes exhibiting no significant functional differences compared to control cells. The transcriptional profile of T lymphocytes also does not appear to be significantly affected, suggesting that peripheral immune dysfunction in Huntington's disease is likely to be mediated primarily by the innate rather than the adaptive immune system. This study increases our understanding of the effects of Huntington's disease on peripheral tissues, while further demonstrating the differential effects of the mutant protein on different but related cell types. Finally, this study suggests that the potential use of novel therapeutics aimed at modulating the Huntington's disease innate immune system should not be extended to include the adaptive immune system
The Nucleon-Mass Difference in Chiral Perturbation Theory and Nuclear Forces
A new method is developed for treating the effect of the neutron-proton mass
difference in isospin-violating nuclear forces. Previous treatments utilized an
awkward subtraction scheme to generate these forces. A field redefinition is
used to remove that mass difference from the Lagrangian (and hence from
asymptotic nucleon states) and replace its effect by effective interactions.
Previous calculations of static Class II charge-independence-breaking and Class
III charge-symmetry-breaking potentials are verified using the new scheme,
which is also used to calculate Class IV nuclear forces. Two-body forces of the
latter type are found to be identical to previously obtained results. A novel
three-body force is also found. Problems involving Galilean invariance with
Class IV one-pion-exchange forces are identified and resolved.Comment: 20 pages, 2 figures, latex - submitted to Physical Review
Atmospheric neutron measurements with the SONTRAC science model
âThe SOlar Neutron TRACking (SONTRAC) telescope was originally developed to measure the energy spectrum and incident direction of neutrons produced in solar flares, in the energy range 20 - 250 MeV. While developed primarily for solar physics, the SONTRAC detector may be employed in virtually any application requiring both energy measurement and imaging capabilities. The SONTRAC Science Model (SM) is presently being operated at the University of New Hampshire (UNH) as a ground-based instrument to investigate the energy spectrum, zenith and azimuth angle dependence of the cosmic-ray induced sea-level atmospheric neutron flux. SONTRAC measurements are based on the non-relativistic double scatter of neutrons off ambient protons within a block of scintillating fibers. Using the n-p elastic double-scatter technique, it is possible to uniquely determine the neutronâs energy and direction on an event-by-event basis. The 3D SM consists of a cube of orthogonal plastic scintillating fiber layers with 5 cm sides, read out by two CCD cameras. Two orthogonal imaging chains allow full 3D reconstruction of scattered proton tracks
The Zeeman effect in the G band
We investigate the possibility of measuring magnetic field strength in G-band
bright points through the analysis of Zeeman polarization in molecular CH
lines. To this end we solve the equations of polarized radiative transfer in
the G band through a standard plane-parallel model of the solar atmosphere with
an imposed magnetic field, and through a more realistic snapshot from a
simulation of solar magneto-convection. This region of the spectrum is crowded
with many atomic and molecular lines. Nevertheless, we find several instances
of isolated groups of CH lines that are predicted to produce a measurable
Stokes V signal in the presence of magnetic fields. In part this is possible
because the effective Land\'{e} factors of lines in the stronger main branch of
the CH A--X transition tend to zero rather quickly for
increasing total angular momentum , resulting in a Stokes spectrum of
the G band that is less crowded than the corresponding Stokes spectrum. We
indicate that, by contrast, the effective Land\'{e} factors of the and
satellite sub-branches of this transition tend to for increasing .
However, these lines are in general considerably weaker, and do not contribute
significantly to the polarization signal. In one wavelength location near 430.4
nm the overlap of several magnetically sensitive and non-sensitive CH lines is
predicted to result in a single-lobed Stokes profile, raising the
possibility of high spatial-resolution narrow-band polarimetric imaging. In the
magneto-convection snapshot we find circular polarization signals of the order
of 1% prompting us to conclude that measuring magnetic field strength in
small-scale elements through the Zeeman effect in CH lines is a realistic
prospect.Comment: 22 pages, 6 figures. To be published in the Astrophysical Journa
- âŠ