673 research outputs found

    Double Dissociation of Format-Dependent and Number-Specific Neurons in Human Parietal Cortex

    Get PDF
    Based on neuroimaging methods, it is a commonly held view that numerical representation in the human parietal lobes is format independent. We used a transcranial magnetic stimulation adaptation paradigm to examine the existence of functionally segregated overlapping populations of neurons for different numerical formats and to reveal how numerical information is encoded and represented. Based on 2 experiments, we found that right parietal lobe stimulation showed a dissociation between digits and verbal numbers, whereas the left parietal lobe showed a double dissociation between the different numerical formats. Further analysis and modeling also excluded pre- or postrepresentational components as the source of the current effects. These results demonstrate that both parietal lobes are equipped with format-dependent neurons that encode quantity

    Processing Ordinality and Quantity: The Case of Developmental Dyscalculia

    Get PDF
    In contrast to quantity processing, up to date, the nature of ordinality has received little attention from researchers despite the fact that both quantity and ordinality are embodied in numerical information. Here we ask if there are two separate core systems that lie at the foundations of numerical cognition: (1) the traditionally and well accepted numerical magnitude system but also (2) core system for representing ordinal information. We report two novel experiments of ordinal processing that explored the relation between ordinal and numerical information processing in typically developing adults and adults with developmental dyscalculia (DD). Participants made “ordered” or “non-ordered” judgments about 3 groups of dots (non-symbolic numerical stimuli; in Experiment 1) and 3 numbers (symbolic task: Experiment 2). In contrast to previous findings and arguments about quantity deficit in DD participants, when quantity and ordinality are dissociated (as in the current tasks), DD participants exhibited a normal ratio effect in the non-symbolic ordinal task. They did not show, however, the ordinality effect. Ordinality effect in DD appeared only when area and density were randomized, but only in the descending direction. In the symbolic task, the ordinality effect was modulated by ratio and direction in both groups. These findings suggest that there might be two separate cognitive representations of ordinal and quantity information and that linguistic knowledge may facilitate estimation of ordinal information

    The discovery BPD (D-BPD) program: Study protocol of a prospective translational multicenter collaborative study to investigate determinants of chronic lung disease in very low birth weight infants

    Get PDF
    Background: Premature birth is a growing and serious public health problem affecting more than one of every ten infants worldwide. Bronchopulmonary dysplasia (BPD) is the most common neonatal morbidity associated with prematurity and infants with BPD suffer from increased incidence of respiratory infections, asthma, other forms of chronic lung illness, and death (Day and Ryan, Pediatr Res 81: 210-213, 2017; Isayama et la., JAMA Pediatr 171:271-279, 2017). BPD is now understood as a longitudinal disease process influenced by the intrauterine environment during gestation and modulated by gene-environment interactions throughout the neonatal and early childhood periods. Despite of this concept, there remains a paucity of multidisciplinary team-based approaches dedicated to the comprehensive study of this complex disease. Methods: The Discovery BPD (D-BPD) Program involves a cohort of infants < 1,250 g at birth prospectively followed until 6 years of age. The program integrates analysis of detailed clinical data by machine learning, genetic susceptibility and molecular translation studies. Discussion: The current gap in understanding BPD as a complex multi-trait spectrum of different disease endotypes will be addressed by a bedside-to-bench and bench-to-bedside approach in the D-BPD program. The D-BPD will provide enhanced understanding of mechanisms, evolution and consequences of lung diseases in preterm infants. The D-BPD program represents a unique opportunity to combine the expertise of biologists, neonatologists, pulmonologists, geneticists and biostatisticians to examine the disease process from multiple perspectives with a singular goal of improving outcomes of premature infants. Trial registration: Does not apply for this study.Fil: Ofman, Gaston. University of Alabama at Birmingahm; Estados UnidosFil: Caballero, Mauricio Tomás. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Álvarez Paggi, Damián Jorge. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Marzec, Jacqui. National Institute of Environmental Health Sciences; Estados UnidosFil: Nowogrodzki, Florencia. No especifíca;Fil: Cho, Hye Youn. National Institute of Environmental Health Sciences; Estados UnidosFil: Sorgetti, Mariana. No especifíca;Fil: Colantonio, Guillermo. No especifíca;Fil: Bianchi, Alejandra. No especifíca;Fil: Prudent, Luis M.. Fundación para la Salud Materno Infantil; ArgentinaFil: Vain, Néstor Eduardo. Fundación para la Salud Materno Infantil; Argentina. Sanatorio de la Trinidad Palermo.; ArgentinaFil: Mariani, Gonzalo Luis. Hospital Italiano; ArgentinaFil: Digregorio, Jorge. Sanatorio de la Trinidad Palermo.; ArgentinaFil: Lopez Turconi, Elba. No especifíca;Fil: Osio, Cristina. Sanatorio "Otamendi y Miroli S. A."; ArgentinaFil: Galletti, Maria Fernanda. Hospital Italiano; ArgentinaFil: Quiros, Mariangeles. Clinica y Maternidad Suizo Argentina; ArgentinaFil: Brum, Andrea. Sanatorio de la Trinidad Palermo.; ArgentinaFil: Lopez Garcia, Santiago. No especifíca;Fil: Garcia, Silvia. Sanatorio "Otamendi y Miroli S. A."; ArgentinaFil: Bell, Douglas. National Institute of Environmental Health Sciences; Estados UnidosFil: Jones, Marcus H.. Pontificia Universidade Católica do Rio Grande do Sul; BrasilFil: Tipple, Trent E.. University of Alabama at Birmingahm; Estados UnidosFil: Kleeberger, Steven R.. National Institute of Environmental Health Sciences; Estados UnidosFil: Polack, Fernando Pedro. University of Alabama at Birmingahm; Estados Unido

    Is Mn-Bound Substrate Water Protonated in the S2 State of Photosystem II?

    Get PDF
    In spite of great progress in resolving the geometric structure of the water-splitting Mn4OxCa cluster in photosystem II, the binding sites and modes of the two substrate water molecules are still insufficiently characterized. While time-resolved membrane-inlet mass spectrometry measurements indicate that both substrate water molecules are bound to the oxygen-evolving complex (OEC) in the S2 and S3 states (Hendry and Wydrzynski in Biochemistry 41:13328–13334, 2002), it is not known (1) if they are both Mn-bound, (2) if they are terminal or bridging ligands, and (3) in what protonation state they are bound in the different oxidation states Si (i = 0, 1, 2, 3, 4) of the OEC. By employing 17O hyperfine sublevel correlation (HYSCORE) spectroscopy we recently demonstrated that in the S2 state there is only one (type of) Mn-bound oxygen that is water exchangeable. We therefore tentatively identified this oxygen as one substrate ‘water’ molecule, and on the basis of the finding that it has a hyperfine interaction of about 10 MHz with the electron spin of the Mn4OxCa cluster, we suggest that it is bound as a Mn–O–Mn bridge within a bis-μ2 oxo-bridged unit (Su et al. in J Am Chem Soc 130:786–787, 2008). Employing pulse electron paramagnetic resonance, 1H/2H Mims electron-nuclear double resonance and 2H-HYSCORE spectroscopies together with 1H/2H-exchange here, we test this hypothesis by probing the protonation state of this exchangeable oxygen. We conclude that this oxygen is fully deprotonated. This result is discussed in the light of earlier reports in the literature

    The relation between amyotrophic lateral sclerosis and inorganic selenium in drinking water: a population-based case-control study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A community in northern Italy was previously reported to have an excess incidence of amyotrophic lateral sclerosis among residents exposed to high levels of inorganic selenium in their drinking water.</p> <p>Methods</p> <p>To assess the extent to which such association persisted in the decade following its initial observation, we conducted a population-based case-control study encompassing forty-one newly-diagnosed cases of amyotrophic lateral sclerosis and eighty-two age- and sex-matched controls. We measured long-term intake of inorganic selenium along with other potentially neurotoxic trace elements.</p> <p>Results</p> <p>We found that consumption of drinking water containing ≥ 1 μg/l of inorganic selenium was associated with a relative risk for amyotrophic lateral sclerosis of 5.4 (95% confidence interval 1.1-26) after adjustment for confounding factors. Greater amounts of cumulative inorganic selenium intake were associated with progressively increasing effects, with a relative risk of 2.1 (95% confidence interval 0.5-9.1) for intermediate levels of cumulative intake and 6.4 (95% confidence interval 1.3-31) for high intake.</p> <p>Conclusion</p> <p>Based on these results, coupled with other epidemiologic data and with findings from animal studies that show specific toxicity of the trace element on motor neurons, we hypothesize that dietary intake of inorganic selenium through drinking water increases the risk for amyotrophic lateral sclerosis.</p
    corecore