98 research outputs found
On the Stability of Stochastic Parametrically Forced Equations with Rank One Forcing
We derive simplified formulas for analyzing the stability of stochastic
parametrically forced linear systems. This extends the results in [T. Blass and
L.A. Romero, SIAM J. Control Optim. 51(2):1099--1127, 2013] where, assuming the
stochastic excitation is small, the stability of such systems was computed
using a weighted sum of the extended power spectral density over the
eigenvalues of the unperturbed operator. In this paper, we show how to convert
this to a sum over the residues of the extended power spectral density. For
systems where the parametric forcing term is a rank one matrix, this leads to
an enormous simplification.Comment: 16 page
Nonlinear interactions in superfluid dynamics: Nonstationary heat transfer due to second sound shock waves
Second sound techniques were used to study superfluid helium. Second sound shock waves produced relative velocities in the bulk fluid. Maximum counterflow velocities produced in this way are found to follow the Langer-Fischer prediction for the fundamental critical velocity in its functional dependence on temperature and pressure. Comparison of successive shock and rotating experiments provides strong evidence that breakdown results in vorticity production in the flow behind the shock. Schlieren pictures have verified the planar nature of second sound shocks even after multiple reflections. The nonlinear theory of second sound was repeatedly verified in its prediction of double shocks and other nonlinear phenomena
Recommended from our members
FIDAP Capabilities for Solving Problems With Stiff Chemistry
In support of the Motorola CRADA, the capabilities of the computational fluid dynamics code FIDAP (Fluid Dynamics International) for simulating problems involving fluid flow, heat transport, and chemical reactions have been assessed and enhanced as needed for semiconductor-processing applications (e.g. chemical vapor deposition). A novel method of treating surface chemical species that uses only pre-existing FIDAP commands is described and illustrated with test problems. A full-Jacobian treatment of the chemical reaction rate expressions during formation of the stiffness matrix has been implemented in FIDAP for both the Arrhenius-parameter and user-subroutine methods of specifying chemical reactions, where the Jacobian terms can be calculated analytically or numerically. This formulation is needed to obtain convergence when reaction rates become large compared to transport rates (stiff chemistry). Several test problems are analyzed, and in all cases this approach yields good convergence behavior, even for extremely stiff fluid-phase and surface reactions. A stiff segregated algorithm has been developed and implemented in FIDAP. Analysis of test problems indicates that this algorithm yields improved convergence behavior compared with the original segregated algorithm. This improved behavior enables segregated techniques to be applied to problems with stiff chemistry, as required for large three-dimensional multi-species problems
Recommended from our members
Radiation-transport method to simulate noncontinuum gas flows for MEMS devices.
A Micro Electro Mechanical System (MEMS) typically consists of micron-scale parts that move through a gas at atmospheric or reduced pressure. In this situation, the gas-molecule mean free path is comparable to the geometric features of the microsystem, so the gas flow is noncontinuum. When mean-free-path effects cannot be neglected, the Boltzmann equation must be used to describe the gas flow. Solution of the Boltzmann equation is difficult even for the simplest case because of its sevenfold dimensionality (one temporal dimension, three spatial dimensions, and three velocity dimensions) and because of the integral nature of the collision term. The Direct Simulation Monte Carlo (DSMC) method is the method of choice to simulate high-speed noncontinuum flows. However, since DSMC uses computational molecules to represent the gas, the inherent statistical noise must be minimized by sampling large numbers of molecules. Since typical microsystem velocities are low (< 1 m/s) compared to molecular velocities ({approx}400 m/s), the number of molecular samples required to achieve 1% precision can exceed 1010 per cell. The Discrete Velocity Gas (DVG) method, an approach motivated by radiation transport, provides another way to simulate noncontinuum gas flows. Unlike DSMC, the DVG method restricts molecular velocities to have only certain discrete values. The transport of the number density of a velocity state is governed by a discrete Boltzmann equation that has one temporal dimension and three spatial dimensions and a polynomial collision term. Specification and implementation of DVG models are discussed, and DVG models are applied to Couette flow and to Fourier flow. While the DVG results for these benchmark problems are qualitatively correct, the errors in the shear stress and the heat flux can be order-unity even for DVG models with 88 velocity states. It is concluded that the DVG method, as described herein, is not sufficiently accurate to simulate the low-speed gas flows that occur in microsystems
ON SPURIOUS BEHAVIOR OF CFD SIMULATIONS
Spurious behavior in underresolved grids and:or semi-implicit temporal discretizations for four computational fluid dynamics (CFD) simulations are studied. The numerical simulations consist of (a) a 1-D chemically relaxed non-equilibrium flow model, (b) the direct numerical simulation (DNS) of 2D incompressible flow over a backward facing step, (c) a loosely coupled approach for a 2D fluid–structure interaction, and (d) a 3D unsteady compressible flow simulation of vortex breakdown on delta wings. These examples were chosen based on their non-apparent spurious behaviors that were difficult to detect without extensive grid and:or temporal refinement studies and without some knowledge from dynamical systems theory. Studies revealed the various possible dangers of misinterpreting numerical simulation of realistic complex flows that are constrained by available computing power. In large scale computations, underresolved grids, semi-implicit procedures, loosely coupled implicit procedures, and insufficiently long-time integration in DNS are most often unavoidable. Consequently, care must be taken in both computation and in interpretation of the numerical data. The results presented confirm the important role that dynamical systems theory can play in the understanding of the non-linear behavior of numerical algorithms and in aiding the identification of the sources of numerical uncertainties in CFD
Molecule-based approach for computing chemical-reaction rates in upper atmosphere hypersonic flows.
This report summarizes the work completed during FY2009 for the LDRD project 09-1332 'Molecule-Based Approach for Computing Chemical-Reaction Rates in Upper-Atmosphere Hypersonic Flows'. The goal of this project was to apply a recently proposed approach for the Direct Simulation Monte Carlo (DSMC) method to calculate chemical-reaction rates for high-temperature atmospheric species. The new DSMC model reproduces measured equilibrium reaction rates without using any macroscopic reaction-rate information. Since it uses only molecular properties, the new model is inherently able to predict reaction rates for arbitrary nonequilibrium conditions. DSMC non-equilibrium reaction rates are compared to Park's phenomenological non-equilibrium reaction-rate model, the predominant model for hypersonic-flow-field calculations. For near-equilibrium conditions, Park's model is in good agreement with the DSMC-calculated reaction rates. For far-from-equilibrium conditions, corresponding to a typical shock layer, the difference between the two models can exceed 10 orders of magnitude. The DSMC predictions are also found to be in very good agreement with measured and calculated non-equilibrium reaction rates. Extensions of the model to reactions typically found in combustion flows and ionizing reactions are also found to be in very good agreement with available measurements, offering strong evidence that this is a viable and reliable technique to predict chemical reaction rates
Recommended from our members
On spurious behavior of CFD simulations
Spurious behavior in underresolved grids and/or semi-implicit temporal discretizations for four computational fluid dynamics (CFD) simulations are studied. The numerical simulations consist of (a) a 1-D chemically relaxed nonequilibrium model, (b) the direct numerical simulation (DNS) of 2-D incompressible flow over a backward facing step, (c) a loosely-coupled approach for a 2-D fluid-structure interaction, and (d) a 3-D compressible unsteady flow simulation of vortex breakdown in delta wings. Using knowledge from dynamical systems theory, various types of spurious behaviors that are numerical artifacts were systematically identified. These studies revealed the various possible dangers of misinterpreting numerical simulation of realistic complex flows that are constrained by the available computing power. In large scale computations underresolved grids, semi-implicit procedures, loosely-coupled implicit procedures, and insufficiently long time integration in DNS are most often unavoidable. Consequently, care must be taken in both computation and in interpretation of the numerical data. The results presented confirm the important role that dynamical systems theory can play in the understanding of the nonlinear behavior of numerical algorithms and in aiding the identification of the sources of numerical uncertainties in CFD
Recommended from our members
Advanced tomographic flow diagnostics for opaque multiphase fluids
This report documents the work performed for the ``Advanced Tomographic Flow Diagnostics for Opaque Multiphase Fluids`` LDRD (Laboratory-Directed Research and Development) project and is presented as the fulfillment of the LDRD reporting requirement. Dispersed multiphase flows, particularly gas-liquid flows, are industrially important to the chemical and applied-energy industries, where bubble-column reactors are employed for chemical synthesis and waste treatment. Due to the large range of length scales (10{sup {minus}6}-10{sup 1}m) inherent in real systems, direct numerical simulation is not possible at present, so computational simulations are forced to use models of subgrid-scale processes, the accuracy of which strongly impacts simulation fidelity. The development and validation of such subgrid-scale models requires data sets at representative conditions. The ideal measurement techniques would provide spatially and temporally resolved full-field measurements of the distributions of all phases, their velocity fields, and additional associated quantities such as pressure and temperature. No technique or set of techniques is known that satisfies this requirement. In this study, efforts are focused on characterizing the spatial distribution of the phases in two-phase gas-liquid flow and in three-phase gas-liquid-solid flow. Due to its industrial importance, the bubble-column geometry is selected for diagnostics development and assessment. Two bubble-column testbeds are utilized: one at laboratory scale and one close to industrial scale. Several techniques for measuring the phase distributions at conditions of industrial interest are examined: level-rise measurements, differential-pressure measurements, bulk electrical impedance measurements, electrical bubble probes, x-ray tomography, gamma-densitometry tomography, and electrical impedance tomography
Recommended from our members
Experimental characterization of slurry bubble-column reactor hydrodynamics
Sandia`s program to develop, implement, and apply diagnostics for hydrodynamic characterization of slurry bubble column reactors (SBCRs) at industrially relevant conditions is discussed. Gas liquid flow experiments are performed on an industrial scale. Gamma densitometry tomography (GDT) is applied to measure radial variations in gas holdup at one axial location. Differential pressure (DP) measurements are used to calculate volume averaged gas holdups along the axis of the vessel. The holdups obtained from DP show negligible axial variation for water but significant variations for oil, suggesting that the air water flow is fully developed (minimal flow variations in the axial direction) but that the air oil flow is still developing at the GDT measurement location. The GDT and DP gas holdup results are in good agreement for the air water flow but not for the air oil flow. Strong flow variations in the axial direction may be impacting the accuracy of one or both of these techniques. DP measurements are also acquired at high sampling frequencies (250 Hz) and are interpreted using statistical analyses to determine the physical mechanism producing each frequency component in the flow. This approach did not yield the information needed to determine the flow regime in these experiments. As a first step toward three phase material distribution measurements, electrical impedance tomography (EIT) and GDT are applied to a liquid solid flow to measure solids holdup. Good agreement is observed between both techniques and known values
- …