138 research outputs found

    On the geometry of a class of N-qubit entanglement monotones

    Full text link
    A family of N-qubit entanglement monotones invariant under stochastic local operations and classical communication (SLOCC) is defined. This class of entanglement monotones includes the well-known examples of the concurrence, the three-tangle, and some of the four, five and N-qubit SLOCC invariants introduced recently. The construction of these invariants is based on bipartite partitions of the Hilbert space in the form C2NCLCl{\bf C}^{2^N}\simeq{\bf C}^L\otimes{\bf C}^l with L=2Nnl=2nL=2^{N-n}\geq l=2^n. Such partitions can be given a nice geometrical interpretation in terms of Grassmannians Gr(L,l) of l-planes in CL{\bf C}^L that can be realized as the zero locus of quadratic polinomials in the complex projective space of suitable dimension via the Plucker embedding. The invariants are neatly expressed in terms of the Plucker coordinates of the Grassmannian.Comment: 7 pages RevTex, Submitted to Physical Review

    New invariants for entangled states

    Get PDF
    We propose new algebraic invariants that distinguish and classify entangled states. Considering qubits as well as higher spin systems, we obtained complete entanglement classifications for cases that were either unsolved or only conjectured in the literature.Comment: published versio

    A Hopf laboratory for symmetric functions

    Full text link
    An analysis of symmetric function theory is given from the perspective of the underlying Hopf and bi-algebraic structures. These are presented explicitly in terms of standard symmetric function operations. Particular attention is focussed on Laplace pairing, Sweedler cohomology for 1- and 2-cochains, and twisted products (Rota cliffordizations) induced by branching operators in the symmetric function context. The latter are shown to include the algebras of symmetric functions of orthogonal and symplectic type. A commentary on related issues in the combinatorial approach to quantum field theory is given.Comment: 29 pages, LaTeX, uses amsmat

    On the geometry of four qubit invariants

    Get PDF
    The geometry of four-qubit entanglement is investigated. We replace some of the polynomial invariants for four-qubits introduced recently by new ones of direct geometrical meaning. It is shown that these invariants describe four points, six lines and four planes in complex projective space CP3{\bf CP}^3. For the generic entanglement class of stochastic local operations and classical communication they take a very simple form related to the elementary symmetric polynomials in four complex variables. Moreover, their magnitudes are entanglement monotones that fit nicely into the geometric set of nn-qubit ones related to Grassmannians of ll-planes found recently. We also show that in terms of these invariants the hyperdeterminant of order 24 in the four-qubit amplitudes takes a more instructive form than the previously published expressions available in the literature. Finally in order to understand two, three and four-qubit entanglement in geometric terms we propose a unified setting based on CP3{\bf CP}^3 furnished with a fixed quadric.Comment: 19 page

    Crystal Graphs and qq-Analogues of Weight Multiplicities for the Root System AnA_n

    Full text link
    We give an expression of the qq-analogues of the multiplicities of weights in irreducible \sl_{n+1}-modules in terms of the geometry of the crystal graph attached to the corresponding U_q(\sl_{n+1})-modules. As an application, we describe multivariate polynomial analogues of the multiplicities of the zero weight, refining Kostant's generalized exponents.Comment: LaTeX file with epic, eepic pictures, 17 pages, November 1994, to appear in Lett. Math. Phy

    Wigner transform and pseudodifferential operators on symmetric spaces of non-compact type

    Full text link
    We obtain a general expression for a Wigner transform (Wigner function) on symmetric spaces of non-compact type and study the Weyl calculus of pseudodifferential operators on them

    Combinatorial Hopf algebras and Towers of Algebras

    Get PDF
    Bergeron and Li have introduced a set of axioms which guarantee that the Grothendieck groups of a tower of algebras n0An\bigoplus_{n\ge0}A_n can be endowed with the structure of graded dual Hopf algebras. Hivert and Nzeutzhap, and independently Lam and Shimozono constructed dual graded graphs from primitive elements in Hopf algebras. In this paper we apply the composition of these constructions to towers of algebras. We show that if a tower n0An\bigoplus_{n\ge0}A_n gives rise to graded dual Hopf algebras then we must have dim(An)=rnn!\dim(A_n)=r^nn! where r=dim(A1)r = \dim(A_1).Comment: 7 page

    Quadratic pseudosupersymmetry in two-level systems

    Full text link
    Using the intertwining relation we construct a pseudosuperpartner for a (non-Hermitian) Dirac-like Hamiltonian describing a two-level system interacting in the rotating wave approximation with the electric component of an electromagnetic field. The two pseudosuperpartners and pseudosupersymmetry generators close a quadratic pseudosuperalgebra. A class of time dependent electric fields for which the equation of motion for a two level system placed in this field can be solved exactly is obtained. New interesting phenomenon is observed. There exists such a time-dependent detuning of the field frequency from the resonance value that the probability to populate the excited level ceases to oscillate and becomes a monotonically growing function of time tending to 3/4. It is shown that near this fixed excitation regime the probability exhibits two kinds of oscillations. The oscillations with a small amplitude and a frequency close to the Rabi frequency (fast oscillations) take place at the background of the ones with a big amplitude and a small frequency (slow oscillations). During the period of slow oscillations the minimal value of the probability to populate the excited level may exceed 1/2 suggesting for an ensemble of such two-level atoms the possibility to acquire the inverse population and exhibit lasing properties.Comment: 5 figure

    Continuous Symmetries of Difference Equations

    Full text link
    Lie group theory was originally created more than 100 years ago as a tool for solving ordinary and partial differential equations. In this article we review the results of a much more recent program: the use of Lie groups to study difference equations. We show that the mismatch between continuous symmetries and discrete equations can be resolved in at least two manners. One is to use generalized symmetries acting on solutions of difference equations, but leaving the lattice invariant. The other is to restrict to point symmetries, but to allow them to also transform the lattice.Comment: Review articl
    corecore