138 research outputs found
On the geometry of a class of N-qubit entanglement monotones
A family of N-qubit entanglement monotones invariant under stochastic local
operations and classical communication (SLOCC) is defined. This class of
entanglement monotones includes the well-known examples of the concurrence, the
three-tangle, and some of the four, five and N-qubit SLOCC invariants
introduced recently. The construction of these invariants is based on bipartite
partitions of the Hilbert space in the form with . Such partitions can be given
a nice geometrical interpretation in terms of Grassmannians Gr(L,l) of l-planes
in that can be realized as the zero locus of quadratic polinomials
in the complex projective space of suitable dimension via the Plucker
embedding. The invariants are neatly expressed in terms of the Plucker
coordinates of the Grassmannian.Comment: 7 pages RevTex, Submitted to Physical Review
New invariants for entangled states
We propose new algebraic invariants that distinguish and classify entangled
states. Considering qubits as well as higher spin systems, we obtained complete
entanglement classifications for cases that were either unsolved or only
conjectured in the literature.Comment: published versio
A Hopf laboratory for symmetric functions
An analysis of symmetric function theory is given from the perspective of the
underlying Hopf and bi-algebraic structures. These are presented explicitly in
terms of standard symmetric function operations. Particular attention is
focussed on Laplace pairing, Sweedler cohomology for 1- and 2-cochains, and
twisted products (Rota cliffordizations) induced by branching operators in the
symmetric function context. The latter are shown to include the algebras of
symmetric functions of orthogonal and symplectic type. A commentary on related
issues in the combinatorial approach to quantum field theory is given.Comment: 29 pages, LaTeX, uses amsmat
On the geometry of four qubit invariants
The geometry of four-qubit entanglement is investigated. We replace some of
the polynomial invariants for four-qubits introduced recently by new ones of
direct geometrical meaning. It is shown that these invariants describe four
points, six lines and four planes in complex projective space . For
the generic entanglement class of stochastic local operations and classical
communication they take a very simple form related to the elementary symmetric
polynomials in four complex variables. Moreover, their magnitudes are
entanglement monotones that fit nicely into the geometric set of -qubit ones
related to Grassmannians of -planes found recently. We also show that in
terms of these invariants the hyperdeterminant of order 24 in the four-qubit
amplitudes takes a more instructive form than the previously published
expressions available in the literature. Finally in order to understand two,
three and four-qubit entanglement in geometric terms we propose a unified
setting based on furnished with a fixed quadric.Comment: 19 page
Crystal Graphs and -Analogues of Weight Multiplicities for the Root System
We give an expression of the -analogues of the multiplicities of weights
in irreducible \sl_{n+1}-modules in terms of the geometry of the crystal
graph attached to the corresponding U_q(\sl_{n+1})-modules. As an
application, we describe multivariate polynomial analogues of the
multiplicities of the zero weight, refining Kostant's generalized exponents.Comment: LaTeX file with epic, eepic pictures, 17 pages, November 1994, to
appear in Lett. Math. Phy
Wigner transform and pseudodifferential operators on symmetric spaces of non-compact type
We obtain a general expression for a Wigner transform (Wigner function) on
symmetric spaces of non-compact type and study the Weyl calculus of
pseudodifferential operators on them
Combinatorial Hopf algebras and Towers of Algebras
Bergeron and Li have introduced a set of axioms which guarantee that the
Grothendieck groups of a tower of algebras can be
endowed with the structure of graded dual Hopf algebras. Hivert and Nzeutzhap,
and independently Lam and Shimozono constructed dual graded graphs from
primitive elements in Hopf algebras. In this paper we apply the composition of
these constructions to towers of algebras. We show that if a tower
gives rise to graded dual Hopf algebras then we must
have where .Comment: 7 page
Quadratic pseudosupersymmetry in two-level systems
Using the intertwining relation we construct a pseudosuperpartner for a
(non-Hermitian) Dirac-like Hamiltonian describing a two-level system
interacting in the rotating wave approximation with the electric component of
an electromagnetic field. The two pseudosuperpartners and pseudosupersymmetry
generators close a quadratic pseudosuperalgebra. A class of time dependent
electric fields for which the equation of motion for a two level system placed
in this field can be solved exactly is obtained. New interesting phenomenon is
observed. There exists such a time-dependent detuning of the field frequency
from the resonance value that the probability to populate the excited level
ceases to oscillate and becomes a monotonically growing function of time
tending to 3/4. It is shown that near this fixed excitation regime the
probability exhibits two kinds of oscillations. The oscillations with a small
amplitude and a frequency close to the Rabi frequency (fast oscillations) take
place at the background of the ones with a big amplitude and a small frequency
(slow oscillations). During the period of slow oscillations the minimal value
of the probability to populate the excited level may exceed 1/2 suggesting for
an ensemble of such two-level atoms the possibility to acquire the inverse
population and exhibit lasing properties.Comment: 5 figure
Continuous Symmetries of Difference Equations
Lie group theory was originally created more than 100 years ago as a tool for
solving ordinary and partial differential equations. In this article we review
the results of a much more recent program: the use of Lie groups to study
difference equations. We show that the mismatch between continuous symmetries
and discrete equations can be resolved in at least two manners. One is to use
generalized symmetries acting on solutions of difference equations, but leaving
the lattice invariant. The other is to restrict to point symmetries, but to
allow them to also transform the lattice.Comment: Review articl
- …