382 research outputs found

    Uniaxial stress tuning of geometrical frustration in a Kondo lattice

    Full text link
    Hexagonal CeRhSn with paramagnetic 4f4f moments on a distorted Kagome lattice displays zero-field quantum critical behavior related to geometrical frustration. We report high-resolution thermal expansion and magnetostriction measurements under multiextreme conditions such as uniaxial stress up to 200 MPa, temperatures down to 0.1 K and magnetic fields up to 10 T. Under uniaxial stress along the aa-direction, quantum criticality disappears and a complex magnetic phase diagram arises with a sequence of phases below 1.2 K and fields between 0 and 3 T (∥a\parallel a). Since the Kondo coupling increases with stress, which alone would stabilize paramagnetic behavior in CeRhSn, the observed order arises from the release of geometrical frustration by in-plane stress.Comment: Accepted in PRB Rapid Com

    Calculation of Optical Conductivity of YbB12_{12} using Realistic Tight-Binding Model

    Get PDF
    Based on the previously reported tight-binding model fitted to the LDA+U band calculation, optical conductivity of the prototypical Kondo insulator YbB12_{12} is calculated theoretically. Many-body effects are taken into account by the self-consistent second order perturbation theory. The gross shape of the optical conductivity observed in experiments are well described by the present calculation, including their temperature-dependences.Comment: 6 pages, 7 figures, use jpsj2.cls, to appear in J. Phys. Soc. Jpn. Vol.73, No.10 (2004

    Gap-anisotropic model for the narrow-gap Kondo insulators

    Get PDF
    A theory is presented which accounts for the dynamical generation of a hybridization gap with nodes in the Kondo insulating materials CeNiSnCeNiSn and CeRhSbCeRhSb. We show that Hunds interactions acting on virtual 4f24f^2 configurations of the cerium ion can act to dynamically select the shape of the cerium ion by generating a Weiss field which couples to the shape of the ion. In low symmetry crystals where the external crystal fields are negligible, this process selects a nodal Kondo semimetal state as the lowest energy configuration.Comment: Substantially Revised Versio

    Robust hybridization gap in the Kondo insulator YbB12 probed by femtosecond optical spectroscopy

    Get PDF
    In heavy fermions the relaxation dynamics of photoexcited carriers has been found to be governed by the low energy indirect gap Eg resulting from hybridization between localized moments and conduction band electrons. Here, carrier relaxation dynamics in a prototype Kondo insulator YbB12 is studied over a large range of temperatures and over three orders of magnitude. We utilize the intrinsic nonlinearity of dynamics to quantitatively determine microscopic parameters, such as electron-hole recombination rate. The extracted value reveals that hybridization is accompanied by a strong charge transfer from localized 4 f levels. The results imply the presence of a hybridization gap up to temperatures of the order of Eg/kB ≈ 200 K, which is extremely robust against electronic excitation. Finally, below 20 K the data reveal changes in the low energy electronic structure, attributed to short-range antiferromagnetic correlations between the localized levels

    A Theory of Anisotropic Semiconductor of Heavy Fermions

    Full text link
    It is demonstrated that a {\veck}-dependence of the hybridization matrix element between ff- and conduction electrons can give rise to an anisotropic hybridization gap of heavy fermions if the filling of electrons corresponds to that of the band insulator. The most interesting case occurs when the hybridization vanishes along some symmetry axis of the crystal reflecting a particular symmetry of the crystal field. The results of a model calculation are consistent with wide range of anomalous properties observed in CeNiSn and its isostructural compounds, the anisotropic semiconductor of heavy fermions. In particular, highly sensitive effect of impurity scattering on the residual density of states for zero energy excitation and the anisotropic temperature dependence of the resistivity are well explained. It is also discussed that a weak semimetallic behavior arises through the weak \veck-dependence of the ff-electron self-energy \Sigma_{f}(\veck,0).Comment: 21 pages, LaTeX (JPSJ style file) and 13 postscript figures, To appear in J. Phys. Soc. Jp
    • …
    corecore