11,569 research outputs found
Strengthening impact assessment: a call for integration and focus
We suggest that the impact assessment community has lost its way based on our observation that impact assessment is under attack because of a perceived lack of efficiency. Specifically, we contend that the proliferation of different impact assessment types creates separate silos of expertise and feeds arguments for not only a lack of efficiency but also a lack of effectiveness of the process through excessive specialisation and a lack of interdisciplinary practice. We propose that the solution is a return to the basics of impact assessment with a call for increased integration around the goal of sustainable development and focus through better scoping. We rehearse and rebut counter arguments covering silo-based expertise, advocacy, democracy, sustainability understanding and communication. We call on the impact assessment community to rise to the challenge of increasing integration and focus, and to engage in the debate about the means of strengthening impact assessment
The Holographic dark energy reexamined
We have reexamined the holographic dark energy model by considering the
spatial curvature. We have refined the model parameter and observed that the
holographic dark energy model does not behave as phantom model. Comparing the
holographic dark energy model to the supernova observation alone, we found that
the closed universe is favored. Combining with the Wilkinson Microwave
Anisotropy Probe (WMAP) data, we obtained the reasonable value of the spatial
curvature of our universe.Comment: divided into sections, add one figure, some typos corrected,
references added, Accepted for publication in PRD; v3: some typos corrected,
title change
On holographic dark-energy models
Different holographic dark-energy models are studied from a unifying point of
view. We compare models for which the Hubble scale, the future event horizon or
a quantity proportional to the Ricci scale are taken as the infrared cutoff
length. We demonstrate that the mere definition of the holographic dark-energy
density generally implies an interaction with the dark-matter component. We
discuss the relation between the equation-of-state parameter and the energy
density ratio of both components for each of the choices, as well as the
possibility of non-interacting and scaling solutions. Parameter estimations for
all three cutoff options are performed with the help of a Bayesian statistical
analysis, using data from supernovae type Ia and the history of the Hubble
parameter. The CDM model is the clear winner of the analysis.
According to the Bayesian Information Criterion (), all holographic models
should be considered as ruled out, since the difference to the
corresponding CDM value is . According to the Akaike Information
Criterion (), however, we find for models with
Hubble-scale and Ricci-scale cutoffs, indicating, that they may still be
competitive. As we show for the example of the Ricci-scale case, also the use
of certain priors, reducing the number of free parameters to that of the
CDM model, may result in a competitive holographic model.Comment: 37 pages, 11 figures, 3 tables, statistical analysis improved,
accepted for publication in Phys.Rev.
The Sunyaev-Zeldovich effect in CMB-calibrated theories applied to the Cosmic Background Imager anisotropy power at l > 2000
We discuss the nature of the possible high-l excess in the Cosmic Microwave
Background (CMB) anisotropy power spectrum observed by the Cosmic Background
Imager (CBI). We probe the angular structure of the excess in the CBI deep
fields and investigate whether it could be due to the scattering of CMB photons
by hot electrons within clusters, the Sunyaev-Zeldovich (SZ) effect. We
estimate the density fluctuation parameters for amplitude, sigma_8, and shape,
Gamma, from CMB primary anisotropy data and other cosmological data. We use the
results of two separate hydrodynamical codes for Lambda-CDM cosmologies,
consistent with the allowed sigma_8 and Gamma values, to quantify the expected
contribution from the SZ effect to the bandpowers of the CBI experiment and
pass simulated SZ effect maps through our CBI analysis pipeline. The result is
very sensitive to the value of sigma_8, and is roughly consistent with the
observed power if sigma_8 ~ 1. We conclude that the CBI anomaly could be a
result of the SZ effect for the class of Lambda-CDM concordance models if
sigma_8 is in the upper range of values allowed by current CMB and Large Scale
Structure (LSS) data.Comment: Accepted by The Astrophysical Journal; 17 pages including 12 color
figures. v2 matches accepted version. Additional information at
http://www.astro.caltech.edu/~tjp/CBI
Simulating Reionization: Character and Observability
In recent years there has been considerable progress in our understanding of
the nature and properties of the reionization process. In particular, the
numerical simulations of this epoch have made a qualitative leap forward,
reaching sufficiently large scales to derive the characteristic scales of the
reionization process and thus allowing for realistic observational predictions.
Our group has recently performed the first such large-scale radiative transfer
simulations of reionization, run on top of state-of-the-art simulations of
early structure formation. This allowed us to make the first realistic
observational predictions about the Epoch of Reionization based on detailed
radiative transfer and structure formation simulations. We discuss the basic
features of reionization derived from our simulations and some recent results
on the observational implications for the high-redshift Ly-alpha sources.Comment: 3 pages, to appear in the Proceedings of First Stars III, Santa Fe,
July 2007, AIP Conference Serie
The Cosmic Microwave Background & Inflation, Then & Now
Boomerang, Maxima, DASI, CBI and VSA significantly increase the case for
accelerated expansion in the early universe (the inflationary paradigm) and at
the current epoch (dark energy dominance), especially when combined with data
on high redshift supernovae (SN1) and large scale structure (LSS). There are
``7 pillars of Inflation'' that can be shown with the CMB probe, and at least
5, and possibly 6, of these have already been demonstrated in the CMB data: (1)
a large scale gravitational potential; (2) acoustic peaks/dips; (3) damping due
to shear viscosity; (4) a Gaussian (maximally random) distribution; (5)
secondary anisotropies; (6) polarization. A 7th pillar, anisotropies induced by
gravity wave quantum noise, could be too small. A minimal inflation parameter
set, \omega_b,\omega_{cdm}, \Omega_{tot}, \Omega_Q,w_Q,n_s,\tau_C, \sigma_8},
is used to illustrate the power of the current data. We find the CMB+LSS+SN1
data give \Omega_{tot} =1.00^{+.07}_{-.03}, consistent with (non-baroque)
inflation theory. Restricting to \Omega_{tot}=1, we find a nearly scale
invariant spectrum, n_s =0.97^{+.08}_{-.05}. The CDM density, \Omega_{cdm}{\rm
h}^2 =.12^{+.01}_{-.01}, and baryon density, \Omega_b {\rm h}^2 =
>.022^{+.003}_{-.002}, are in the expected range. (The Big Bang nucleosynthesis
estimate is 0.019\pm 0.002.) Substantial dark (unclustered) energy is inferred,
\Omega_Q \approx 0.68 \pm 0.05, and CMB+LSS \Omega_Q values are compatible with
the independent SN1 estimates. The dark energy equation of state, crudely
parameterized by a quintessence-field pressure-to-density ratio w_Q, is not
well determined by CMB+LSS (w_Q < -0.4 at 95% CL), but when combined with SN1
the resulting w_Q < -0.7 limit is quite consistent with the w_Q=-1 cosmological
constant case.Comment: 20 pages, 8 figures, in Theoretical Physics, MRST 2002: A Tribute to
George Libbrandt (AIP), eds. V. Elias, R. Epp, R. Myer
Consistency of Gravity with the Cosmological Observations in Palatini Formalism
In this work we study the dynamics of universe in
modified gravity with Palatini formalism. We use data from recent observations
as Supernova Type Ia (SNIa) Gold sample and Supernova Legacy Survey (SNLS)
data, size of baryonic acoustic peak from Sloan Digital Sky Survey (SDSS), the
position of the acoustic peak from the CMB observations and large scale
structure formation (LSS) from the 2dFGRS survey to put constraint on the
parameters of the model. To check the consistency of this action, we compare
the age of old cosmological objects with the age of universe. In the combined
analysis with the all the observations, we find the parameters of model as
and
.Comment: 12 pages, 7 figure
A Measurement of the Angular Power Spectrum of the CMB from l = 100 to 400
We report on a measurement of the angular spectrum of the CMB between
and made at 144 GHz from Cerro Toco in the
Chilean altiplano. When the new data are combined with previous data at 30 and
40 GHz, taken with the same instrument observing the same section of sky, we
find: 1) a rise in the angular spectrum to a maximum with K at and a fall at , thereby localizing the peak
near ; and 2) that the anisotropy at has the
spectrum of the CMB.Comment: 4 pages, 2 figures. Revised version; includes Ned Wright's postscript
fix. Accepted by ApJL. Website at http://physics.princeton.edu/~cmb
A Limit on the Polarized Anisotropy of the Cosmic Microwave Background at Subdegree Angular Scales
A ground-based polarimeter, PIQUE, operating at 90 GHz has set a new limit on
the magnitude of any polarized anisotropy in the cosmic microwave background.
The combination of the scan strategy and full width half maximum beam of 0.235
degrees gives broad window functions with average multipoles, l = 211+294-146
and l = 212+229-135 for the E- and B-mode window functions, respectively. A
joint likelihood analysis yields simultaneous 95% confidence level flat band
power limits of 14 and 13 microkelvin on the amplitudes of the E- and B-mode
angular power spectra, respectively. Assuming no B-modes, a 95% confidence
limit of 10 microkelvin is placed on the amplitude of the E-mode angular power
spectrum alone.Comment: 4 pages, 3 figures, submitted to Astrophysical Journal Letter
- …