18,116 research outputs found

    Barrier island erosion and overwash study -- effect of seawalls. Volume 2

    Get PDF
    This is the second of a pair of reports documenting the effects of storms on beach systems including the presence of seawalls. With the aim of simulating the effects of overwash on barrier islands with seawalls and characterizing their response, a series of eight experiments was conducted at the Coastal Engineering Laboratory of the University of Florida. The barrier island was simulated by a 400 feet wide horizontal crest and an initially uniform mildly-sloped (1:19) beach. The effects of positioning the seawall at two different locations as well as the effects of various storm surge levels and accompanying overtopping were investigated. Experiments were conducted with both regular and irregular storm waves. With the seawall located at the slope break between the crest and the sloping beach of the barrier island, and the crest of the seawall just submerged in sand, the effects on the sediment transport process were found to be minimal. For the same position of the seawall but with the crest of the seawall raised above the surrounding ground level, overtopping caused washover of sand indicating substantial transport in suspension. Increased levels of overtopping tended to accentuate bed profile changes but supress bar formation (as did irregular waves). Positioning the seawall at the Mean Sea Level shoreline caused significant scour both immediately landward as well as immediately seaward of the seawall. A prominent scour trough developed further seaward. The longshore bar was highly three-dimensional. It appears that seawalls need to be located adequately landward of the shoreline to discharge their function effectively without adverse effect to the beach. In addition, concerns for safety warrant the presence of an adequate buffer-zone between the seawall and the upland property. (61 pp.

    Effective diffusion constant in a two dimensional medium of charged point scatterers

    Full text link
    We obtain exact results for the effective diffusion constant of a two dimensional Langevin tracer particle in the force field generated by charged point scatterers with quenched positions. We show that if the point scatterers have a screened Coulomb (Yukawa) potential and are uniformly and independently distributed then the effective diffusion constant obeys the Volgel-Fulcher-Tammann law where it vanishes. Exact results are also obtained for pure Coulomb scatterers frozen in an equilibrium configuration of the same temperature as that of the tracer.Comment: 9 pages IOP LaTex, no figure

    Renormalization of Drift and Diffusivity in Random Gradient Flows

    Full text link
    We investigate the relationship between the effective diffusivity and effective drift of a particle moving in a random medium. The velocity of the particle combines a white noise diffusion process with a local drift term that depends linearly on the gradient of a gaussian random field with homogeneous statistics. The theoretical analysis is confirmed by numerical simulation. For the purely isotropic case the simulation, which measures the effective drift directly in a constant gradient background field, confirms the result previously obtained theoretically, that the effective diffusivity and effective drift are renormalized by the same factor from their local values. For this isotropic case we provide an intuitive explanation, based on a {\it spatial} average of local drift, for the renormalization of the effective drift parameter relative to its local value. We also investigate situations in which the isotropy is broken by the tensorial relationship of the local drift to the gradient of the random field. We find that the numerical simulation confirms a relatively simple renormalization group calculation for the effective diffusivity and drift tensors.Comment: Latex 16 pages, 5 figures ep

    Continuum Derrida Approach to Drift and Diffusivity in Random Media

    Full text link
    By means of rather general arguments, based on an approach due to Derrida that makes use of samples of finite size, we analyse the effective diffusivity and drift tensors in certain types of random medium in which the motion of the particles is controlled by molecular diffusion and a local flow field with known statistical properties. The power of the Derrida method is that it uses the equilibrium probability distribution, that exists for each {\em finite} sample, to compute asymptotic behaviour at large times in the {\em infinite} medium. In certain cases, where this equilibrium situation is associated with a vanishing microcurrent, our results demonstrate the equality of the renormalization processes for the effective drift and diffusivity tensors. This establishes, for those cases, a Ward identity previously verified only to two-loop order in perturbation theory in certain models. The technique can be applied also to media in which the diffusivity exhibits spatial fluctuations. We derive a simple relationship between the effective diffusivity in this case and that for an associated gradient drift problem that provides an interesting constraint on previously conjectured results.Comment: 18 pages, Latex, DAMTP-96-8

    Symmetry Relations for Trajectories of a Brownian Motor

    Full text link
    A Brownian Motor is a nanoscale or molecular device that combines the effects of thermal noise, spatial or temporal asymmetry, and directionless input energy to drive directed motion. Because of the input energy, Brownian motors function away from thermodynamic equilibrium and concepts such as linear response theory, fluctuation dissipation relations, and detailed balance do not apply. The {\em generalized} fluctuation-dissipation relation, however, states that even under strongly thermodynamically non-equilibrium conditions the ratio of the probability of a transition to the probability of the time-reverse of that transition is the exponent of the change in the internal energy of the system due to the transition. Here, we derive an extension of the generalized fluctuation dissipation theorem for a Brownian motor for the ratio between the probability for the motor to take a forward step and the probability to take a backward step

    Perturbation theory for the effective diffusion constant in a medium of random scatterer

    Full text link
    We develop perturbation theory and physically motivated resummations of the perturbation theory for the problem of a tracer particle diffusing in a random media. The random media contains point scatterers of density ρ\rho uniformly distributed through out the material. The tracer is a Langevin particle subjected to the quenched random force generated by the scatterers. Via our perturbative analysis we determine when the random potential can be approximated by a Gaussian random potential. We also develop a self-similar renormalisation group approach based on thinning out the scatterers, this scheme is similar to that used with success for diffusion in Gaussian random potentials and agrees with known exact results. To assess the accuracy of this approximation scheme its predictions are confronted with results obtained by numerical simulation.Comment: 22 pages, 6 figures, IOP (J. Phys. A. style

    Solution of large scale nuclear structure problems by wave function factorization

    Full text link
    Low-lying shell model states may be approximated accurately by a sum over products of proton and neutron states. The optimal factors are determined by a variational principle and result from the solution of rather low-dimensional eigenvalue problems. Application of this method to sd-shell nuclei, pf-shell nuclei, and to no-core shell model problems shows that very accurate approximations to the exact solutions may be obtained. Their energies, quantum numbers and overlaps with exact eigenstates converge exponentially fast as the number of retained factors is increased.Comment: 12 pages, 12 figures (from 15 eps files) include

    Overscreening in 1D lattice Coulomb gas model of ionic liquids

    Full text link
    Overscreening in the charge distribution of ionic liquids at electrified interfaces is shown to proceed from purely electrostatic and steric interactions in an exactly soluble one dimensional lattice Coulomb gas model. Being not a mean-field effect, our results suggest that even in higher dimensional systems the overscreening could be accounted for by a more accurate treatment of the basic lattice Coulomb gas model, that goes beyond the mean field level of approximation, without any additional interactions.Comment: 4 pages 5 .eps figure
    • 

    corecore