1,258 research outputs found
Catastrophe versus instability for the eruption of a toroidal solar magnetic flux rope
The onset of a solar eruption is formulated here as either a magnetic
catastrophe or as an instability. Both start with the same equation of force
balance governing the underlying equilibria. Using a toroidal flux rope in an
external bipolar or quadrupolar field as a model for the current-carrying flux,
we demonstrate the occurrence of a fold catastrophe by loss of equilibrium for
several representative evolutionary sequences in the stable domain of parameter
space. We verify that this catastrophe and the torus instability occur at the
same point; they are thus equivalent descriptions for the onset condition of
solar eruptions.Comment: V2: update to conform to the published article; new choice for
internal inductance of torus; updated Fig. 2; new Figs. 3, 5, and
SNR Enhancement in Brillouin Microspectroscopy using Spectrum Reconstruction
Brillouin imaging suffers from intrinsically low signal-to-noise ratios
(SNR). Such low SNRs can render common data analysis protocols unreliable,
especially for SNRs below . In this work we exploit two denoising
algorithms, namely maximum entropy reconstruction (MER) and wavelet analysis
(WA), to improve the accuracy and precision in determination of Brillouin
shifts and linewidth. Algorithm performance is quantified using Monte-Carlo
simulations and benchmarked against the Cram\'er-Rao lower bound. Superior
estimation results are demonstrated even at low SNRS (). Denoising was
furthermore applied to experimental Brillouin spectra of distilled water at
room temperature, allowing the speed of sound in water to be extracted.
Experimental and theoretical values were found to be consistent to within
at unity SNR
Quasiperiodic oscillations in a strong gravitational field around neutron stars testing braneworld models
The strong gravitational field of neutron stars in the brany universe could
be described by spherically symmetric solutions with a metric in the exterior
to the brany stars being of the Reissner-Nordstrom type containing a brany
tidal charge representing the tidal effect of the bulk spacetime onto the star
structure. We investigate the role of the tidal charge in orbital models of
high-frequency quasiperiodic oscillations (QPOs) observed in neutron star
binary systems. We focus on the relativistic precession model. We give the
radial profiles of frequencies of the Keplerian (vertical) and radial epicyclic
oscillations. We show how the standard relativistic precession model modified
by the tidal charge fits the observational data, giving estimates of the
allowed values of the tidal charge and the brane tension based on the processes
going in the vicinity of neutron stars. We compare the strong field regime
restrictions with those given in the weak-field limit of solar system
experiments.Comment: 26 pages, 6 figure
Eruption of a Kink-Unstable Filament in Active Region NOAA 10696
We present rapid-cadence Transition Region And Coronal Explorer (TRACE)
observations which show evidence of a filament eruption from active region NOAA
10696, accompanied by an X2.5 flare, on 2004 November 10. The eruptive
filament, which manifests as a fast coronal mass ejection some minutes later,
rises as a kinking structure with an apparently exponential growth of height
within TRACE's field of view. We compare the characteristics of this filament
eruption with MHD numerical simulations of a kink-unstable magnetic flux rope,
finding excellent qualitative agreement. We suggest that, while tether
weakening by breakout-like quadrupolar reconnection may be the release
mechanism for the previously confined flux rope, the driver of the expansion is
most likely the MHD helical kink instability.Comment: Accepted by ApJ Letters. 4 figures (Fig. 3 in two parts). For MPEG
files associated with Figure 1, see:
http://www.mssl.ucl.ac.uk/~drw/papers/kink/ktrace.mpg
http://www.mssl.ucl.ac.uk/~drw/papers/kink/kmdi.mpg
http://www.mssl.ucl.ac.uk/~drw/papers/kink/ksimu.mp
Focusing of spatially inhomogeneous partially coherent, partially polarized electromagnetic fields
Published versio
Inflammatory bowel disease-specific autoantibodies in HLA-B27-associated spondyloarthropathies: Increased prevalence of ASCA and pANCA
Aims: An association between inflammatory bowel disease (IBD) and spondyloarthropathies (SpA) has repeatedly been reported. The aim of the present study was to investigate whether serologic markers of IBD, e. g. antibodies against Saccharomyces cerevisiae (ASCA), antibodies against exocrine pancreas (PAB) and perinuclear antineutrophil cytoplasmic antibodies (pANCA) are present in HLA-B27-associated SpA. Methods: 87 patients with HLA-B27-positive SpA and 145 controls were tested for ASCA, PAB and pANCA employing ELISA or indirect immunofluorescence, respectively. Antibody-positive patients were interviewed regarding IBD-related symptoms using a standardized questionnaire. Results/Conclusion: When compared to the controls, ASCA IgA but not ASCA IgG levels were significantly increased in patients with SpA, in particular in ankylosing spondylitis (AS) and undifferentiated SpA (uSpA). pANCA were found in increased frequency in patients with SpA whereas PAB were not detected. The existence of autoantibodies was not associated with gastrointestinal symptoms but sustains the presence of a pathophysiological link between bowel inflammation and SpA. Copyright (C) 2004 S. Karger AG, Basel
Orbital resonances in discs around braneworld Kerr black holes
Rotating black holes in the brany universe of the Randall-Sundrum type are
described by the Kerr geometry with a tidal charge b representing the
interaction of the brany black hole and the bulk spacetime. For b<0 rotating
black holes with dimensionless spin a>1 are allowed. We investigate the role of
the tidal charge b in the orbital resonance model of QPOs in black hole
systems. The orbital Keplerian, the radial and vertical epicyclic frequencies
of the equatorial, quasicircular geodetical motion are given and their radial
profiles are discussed. The resonant conditions are given in three
astrophysically relevant situations: for direct (parametric) resonances, for
the relativistic precession model, and for some trapped oscillations of the
warped discs, with resonant combinational frequencies. It is shown, how b could
influence matching of the observational data indicating the 3:2 frequency ratio
observed in GRS 1915+105 microquasar with prediction of the orbital resonance
model; limits on allowed range of the black hole parameters a and b are
established. The "magic" dimensionless black hole spin enabling presence of
strong resonant phenomena at the radius where \nu_K:\nu_{\theta}:\nu_r=3:2:1 is
determined in dependence on b. Such strong resonances could be relevant even in
sources with highly scattered resonant frequencies, as those expected in Sgr
A*. The specific values of a and b are given also for existence of specific
radius where \nu_K:\nu_{\theta}:\nu_r=s:t:u with 5>=s>t>u being small natural
numbers. It is shown that for some ratios such situation is impossible in the
field of black holes. We can conclude that analysing the microquasars
high-frequency QPOs in the framework of orbital resonance models, we can put
relevant limits on the tidal charge of brany Kerr black holes.Comment: 31 pages, 19 figures, to appear in General Relativity and Gravitatio
- âŠ