259 research outputs found
Evolution of PAH Features from Proto- to Planetary Nebulae
With the aim to investigate the overall evolution of UIR band features with
hardening of UV radiation (increase of the star's effective temperature) we
have analysed ISO spectra for 32 C-rich stars: 20 proto-planetary nebulae and
12 planetary nebulae with Wolf-Rayet central stars. In this contribution we
discuss variations in the peak position of UIR bands among analysed objects,
and demonstrate that variations in the ``7.7'' to 11.3 microns flux ratio are
correlated with the effective temperature (probably due to an increase of the
ionization state of their carriers).Comment: 4 pages, 3 figures, 1 table, to appear in the Proceedings of the
conference "Planetary Nebulae as Astronomical Tools", edited by R. Szczerba,
G. Stasi\'nska, and S. K. G\'orny, AIP Conference Proceedings, Melville, New
Yor
Detection of the Central Star of the Planetary Nebula NGC 6302
NGC 6302 is one of the highest ionization planetary nebulae known and shows
emission from species with ionization potential >300eV. The temperature of the
central star must be >200,000K to photoionize the nebula, and has been
suggested to be up to ~ 400,000K. On account of the dense dust and molecular
disc, the central star has not convincingly been directly imaged until now. NGC
6302 was imaged in six narrow band filters by Wide Field Camera 3 on HST as
part of the Servicing Mission 4 Early Release Observations. The central star is
directly detected for the first time, and is situated at the nebula centre on
the foreground side of the tilted equatorial disc. The magnitudes of the
central star have been reliably measured in two filters(F469N and F673N).
Assuming a hot black body, the reddening has been measured from the
(4688-6766\AA) colour and a value of c=3.1, A_v=6.6 mag determined. A G-K main
sequence binary companion can be excluded. The position of the star on the HR
diagram suggests a fairly massive PN central star of about 0.64,M_sun close to
the white dwarf cooling track. A fit to the evolutionary tracks for
(T,L,t)=(200,000K, 2000L_sun, 2200yr), where t is the nebular age, is obtained;
however the luminosity and temperature remain uncertain. The model tracks
predict that the star is rapidly evolving, and fading at a rate of almost 1 %
per year. Future observations could test this prediction.Comment: 13 pages, 5 figures, submitted to ApJ Letters on 25.09.2009 accepted
on 19.10.200
Immersive virtual reality enables technical skill acquisition for scrub nurses in complex revision total knee arthroplasty.
INTRODUCTION: Immersive Virtual Reality (iVR) is a novel technology which can enhance surgical training in a virtual environment without supervision. However, it is untested for the training to select, assemble and deliver instrumentation in orthopaedic surgery-typically performed by scrub nurses. This study investigates the impact of an iVR curriculum on this facet of the technically demanding revision total knee arthroplasty. MATERIALS AND METHODS: Ten scrub nurses completed training in four iVR sessions over a 4-week period. Initially, nurses completed a baseline real-world assessment, performing their role with real equipment in a simulated operation assessment. Each subsequent iVR session involved a guided mode, where the software taught participants the procedural choreography and assembly of instrumentation in a simulated operating room. In the latter three sessions, nurses also undertook an assessment in iVR. Outcome measures were related to procedural sequence, duration of surgery and efficiency of movement. Transfer of skills from iVR to the real world was assessed in a post-training simulated operation assessment. A pre- and post-training questionnaire assessed the participants knowledge, confidence and anxiety. RESULTS: Operative time reduced by an average of 47% across the 3 unguided sessions (mean 55.5 ± 17.6 min to 29.3 ± 12.1 min, p > 0.001). Assistive prompts reduced by 75% (34.1 ± 16.8 to 8.6 ± 8.8, p < 0.001), dominant hand motion by 28% (881.3 ± 178.5 m to 643.3 ± 119.8 m, p < 0.001) and head motion by 36% (459.9 ± 99.7 m to 292.6 ± 85.3 m, p < 0.001). Real-world skill improved from 11% prior to iVR training to 84% correct post-training. Participants reported increased confidence and reduced anxiety in scrubbing for rTKA procedures (p < 0.001). CONCLUSIONS: For scrub nurses, unfamiliarity with complex surgical procedures or equipment is common. Immersive VR training improved their understanding, technical skills and efficiency. These iVR-learnt skills transferred into the real world
Influence of the columnar structure of heteroepitaxial nitride layers on the transport of electrons
The influence of the columnar structure of heteroepitaxial nitride layers on electronic transport has been described within the model of thermionic emission of carriers through potential barriers formed at grain boundaries. Dependence of the potential barrier height on the material properties and applied external voltage has been calculated. Potential barriers heights for gallium nitride layers grown by the metalorganic vapour phase epitaxy method has been estimated to be in the range of 20-60 meV and 10-40 meV in the dark and under illumination, respectively
New fabrication approach to ZnO multiple nanofiber sensors
In the presented work, ZnO nanofiber sensor structures designed and fabricated
using a standard microelectronic device technology were studied. The structures in the
configuration of a resistor with chemically active ZnO multiple nanofibers deposited by
electrospinning method were prepared. Investigation of inclusion in the process reactive-
ly sputtered AlN insulating film to improve the robustness of the nanofibres on the
substrate was undertaken. Selective wet chemical etching of AlN film using photoresist
developers and a photoresist mask to define the sensor active area was studied. The
Ti/Au ohmic contacts were fabricated using the lift-off photolithography process. To-
pography of the sensor structure details was investigated using AFM. Electrical charac-
terization by means of I-V measurements was made. Sensitivity to the physiologically
relevant concentration of Bovine Serum Albumin in water solution was shown.
When you are citing the document, use the following link http://essuir.sumdu.edu.ua/handle/123456789/2058
Hidden polymorphism of FAPbI3 discovered by Raman spectroscopy
Formamidinium lead iodide FAPbI3 can be used in its cubic, black form as a light absorber material in single junction solar cells. It has a band gap 1.5 eV close to the maximum of the Shockley Queisser limit, and reveals a high absorption coefficient. Its high thermal stability up to 320 C has also a downside, which is the instability of the photo active form at room temperature RT . Thus, the black amp; 945; phase transforms at RT with time into a yellow non photo active amp; 948; phase. The black phase can be recovered by annealing of the yellow state. In this work, a polymorphism of the amp; 945; phase at room temperature was found as synthesized amp; 945;i , degraded amp; 945; amp; 948; and thermally recovered amp; 945;rec . They differ in the Raman spectra and PL signal, but not in the XRD patterns. Using temperature dependent Raman spectroscopy, we identified a structural change in the amp; 945;i polymorph at ca. 110 C. Above 110 C, the FAPbI3 structure has undoubtedly cubic Pm[3 with combining macron]m symmetry high temperature phase amp; 945;HT . Below that temperature, the amp; 945;i phase was suggested to have a distorted perovskite structure with Im[3 with combining macron] symmetry. Thermally recovered FAPbI3 amp; 945;rec also demonstrated the structural transition to amp; 945;HT at the same temperature ca. 110 C during its heating. The understanding of hybrid perovskites may bring additional assets in the development of new and stable structure
Decay mechanisms in CdS buffered Cu In,Ga Se2 thin film solar cells after exposure to thermal stress Understanding the role of Na
Due to their tunable bandgap energy, Cu In,Ga Se2 CIGSe thin film solar cells are an attractive option for use as bottom devices in tandem configurations. In monolithic tandem devices, the thermal stability of the bottom device is paramount for reliable application. Ideally, it will permit the processing of a top device at the required optimum process temperature. Here, we investigate the degradation behavior of chemical bath deposited CBD CdS buffered CIGSe thin film solar cells with and without Na incorporation under thermal stress in ambient air and vacuum with the aim to gain a more detailed understanding of their degradation mechanisms. For the devices studied, we observe severe degradation after annealing at 300 C independent of the atmosphere. The electrical and compositional properties of the samples before and after a defined application of thermal stress are studied. In good agreement with literature reports, we find pronounced Cd diffusion into the CIGS absorber layer. In addition, for Na containing samples, the observed degradation can be mainly explained by the formation of Na induced acceptor states in the TCO front contact and a back contact barrier formation due to the out diffusion of Na. Supported by numerical device simulation using SCAPS 1D, various possible degradation models are discussed and correlated with our finding
Impact of rough substrates on hydrogen doped indium oxides for the application in CIGS devices
Indium oxide based transparent conductive oxides TCOs are promising contact layers in solar cells due totheir outstanding electrical and optical properties. However, when applied in Cu In,Ga Se2or Si hetero junctionsolar cells the specific roughness of the material beneath can affect the growth and the properties of the TCO.We investigated the electrical properties of hydrogen doped and hydrogen tungsten co doped indium oxidesgrown on rough Cu In,Ga Se2samples as well as on textured and planar glass. At sharp ridges and V shapedvalleys crack shaped voids form inside the indium oxide films, which limit the effective electron mobilityof the In2O3 H and In2O3 H,W thin films. This was found for films deposited by magnetron sputtering andreactive plasma deposition at several deposition parameters, before as well as after annealing and solid phasecrystallization. This suggests universal behavior that will have a wide impact on solar cell device
- …